Горький М

Жанна Анатольевна РжевскаяМедицинская биология: конспект лекций для вузов. Биология и история – межпредметные связи 1 курс связь биологии с другими науками

Медицина XXI века практически полностью основана на достижениях биологии. Группы ученых, которые занимаются такими как генетика, молекулярная биология, иммунология, биотехнология, вносят свой вклад в развитие современных методов борьбы с заболеваниями. Это и доказывает связь биологии с медициной.

Биология играет большую роль в развитии медицины

Современные биологические открытия позволяют человечеству выйти на принципиально новый уровень в развитии медицины. Например, японские ученые смогли выделить и размножить естественным путем стволовые клетки, полученные из тканей обычного среднестатистического мужчины. Подобные открытия, несомненно, могут повлиять на медицину будущего.

Экспериментальная биология и медицина тесно связаны. Из отраслей касается не только генетики, молекулярной биологии или биотехнологии, но и таких фундаментальных направлений как ботаника, физиология растений, зоология и, конечно же, анатомия и Глубокие исследования новых видов растений и животных могут дать толчок к открытию безвредных, природных способов борьбы с заболеваниями. Открытия в области анатомии и физиологии способны привести к качественному улучшению процесса лечения, реабилитации или проведения операций.

Проблемы медицины

Современный уровень медицины принципиально отличается от такового, существовавшего 20-30 лет назад. Уменьшилось число детской смертности, увеличился период продолжительности жизни. Но все же сегодня некоторые вопросы не под силу решить даже лучшим врачам.

Возможно, главной проблемой современной медицины является финансирование. Открытие новых препаратов, создание протезов, и тканей - все это требует фантастических затрат. Эта проблема касается и самих пациентов. Большинство сложных хирургических операций требует крупную сумму денег, а некоторые препараты забирают практически всю месячную зарплату. Развитие биологии и открытия во многих ее областях может привести к качественному скачку в медицине, которая станет дешевле, но вместе с тем и совершеннее.

Фундаментальная медицина и биология

Значение биологии в медицине нельзя переоценить: простейшие операции требуют высоких умений в области практической анатомии. Знать строение человека, функции органов, расположение каждого сосуда и нерва - все это является неотъемлемой частью обучения в любом медицинском университете.

Хирургия - это лишь одно из направлений современной медицины. Благодаря многочисленным открытиям в области биологии, человек может получить специализированное и профессиональное лечение. Врач-хирург с помощью новейшего оборудования способен провести высокоуровневые операции, в том числе трансплантации органов и тканей. Уже в 2009 годы была проведена первая операция по пересадке сердца и почки. Все это было достигнуто с помощью открытий ученых-биологов, поэтому роль биологии в медицине неоспорима.

Генетика в медицине

Большое значение биологии в медицине также связано с изучением наследственных заболеваний человека. Изучая передачу генов из поколения в поколение, ученые смогли открыть ряд генетических заболеваний. Сюда же относят и наиболее опасные из них: синдом Дауна, муковисцидоз, гемофилию.

Сегодня стало возможным предсказать появление генетических заболеваний у ребенка. Если некая пара хочет проанализировать, возможно ли появление подобных болезней у их детей, они могут обратиться в специальные клиники. Там, изучив генеалогическое древо родителей, могут высчитать процент появления отклонений у малыша.

Секвенирование генома человека

Прочитать геном человека - одна из важнейших задач современной биологии. Она была решена уже к 2008 году, однако свойства этого генома окончательно не изучены. Предполагается, что в будущем можно будет перейти на персональную медицину с использованием индивидуального паспорта генома человека. Почему так важно узнать генетическую последовательность?

Каждый человек - это индивидуальный организм. Препарат, который способен вылечить заболевание у одного человека, может вызвать побочное воздействие у другого. Сегодня врачи не могут точно предугадать, возникнут ли негативные последствия при воздействии того или иного антибиотика, лекарства. Если геном каждого человека полностью расшифруют, курс лечения будет подобран индивидуально для каждого пациента. Это не только повысит эффективность терапии, но и поможет избежать побочного воздействия препаратов.

Секвенирование генома бактерий, растений и животных уже сегодня приносит свои плоды. Современные ученые-биологи способны использовать гены других организмов в собственных целях. Здесь роль биологии в медицине обусловлена тем, что полезные для человека гены могут помочь при лечении множества заболеваний. Так, бактерии, синтезирующие природный инсулин, уже не выдумка. Более того, проводится в промышленных масштабах на специальных фабриках, где бактерии специально культивируются, а их штаммы используются для получения нужного гормона. В итоге человек, который болен сахарным диабетом, может поддерживать нормальную жизнедеятельность.

Биотехнологии - будущее медицины

Биотехнология - это молодая и вместе с тем одна из важнейших отраслей биологии. На современном этапе развития медицины уже открыто множество способов борьбы с заболеваниями. Среди них - антибиотики, лекарственные препараты животного и растительного происхождения, химические препараты, вакцины. Однако существует проблема, при которой с течением времени эффективность некоторых антибиотиков и лекарств уменьшается. Связано это с тем, что микроорганизмы, особенно постоянно мутируют, приспосабливаясь к новым методам борьбы с препаратами.

Биотехнологии в будущем позволят изменять структуру веществ, создавая новые виды медикаментов. К примеру, можно будет осуществить конформационное изменение молекулы пенициллина, в результате чего мы получим другое вещество с теми же свойствами.

Опухолевые заболевания - это острая проблема современной медицины. Борьба с раковыми клетками является целью первостепенной важности для ученых по всему миру. На сегодняшний день известны такие вещества, которые способны подавлять развитие опухоли. К ним относятся блеомицин и антрациклин. Однако главная проблема состоит в том, что использование таких препаратов может привести к нарушению и остановке работы сердца. Считается, что изменение строения блеомицина и антрациклина избавит от нежелательного воздействия на организм человека. Это только подтверждает большое значение биологии в медицине.

Использование стволовых клеток

Сегодня многие ученые считают, что стволовые клетки - это путь к вечной молодости. Связано это с их специфическими свойствами.

Стволовые клетки способны дифференцироваться абсолютно в любые клетки и ткани организма. Они могут дать начало клеткам крови, нервным клеткам, костным и мышечным клеткам. Зародыш человека полностью состоит из стволовых клеток, что объясняется необходимостью в постоянном делении и построении систем органов и тканей. С возрастом количество стволовых клеток в организме человека уменьшается, что является одной из причин старения.

При трансплантации органов и тканей существует проблема отторжения чужеродных клеток организмом. Это может привести порой к летальному исходу. Чтобы избежать подобной ситуации, ученые сделали попытку выращивания органов из стволовых клеток человека. Такой способ открывает огромные перспективы для трансплантологии, т. к. органы, синтезированные из клеток пациента, не будут отторгаться его организмом.

Биология в современной медицине

Качественное лечение заболеваний напрямую зависит от достижений в области биологии. Огромное значение биологии в медицине также объясняется тем, что современные отрасли науки направлены на совершенствование методов борьбы с болезнями человека. Уже в недалеком будущем человек сможет вылечиться от рака, СПИДа, диабета. Генетические заболевания можно будет обойти еще в младенчестве, а создание идеального человека уже не будет выдумкой.

Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого.

Биология (греч. bios- «жизнь»; logos - учение) - наука о жизни (живой природе), одна из естественных наук, предметом которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

Связь биологии с другими науками: Биология тесно связана с другими науками и иногда очень трудно провести грань между ними. Изучение жизнедеятельности клетки включает в себя изучение молекулярных процессов протекающих внутри клетки, этот раздел называется молекулярная биология и иногда относится к химии а не к биологии. Химические реакции протекающие в организме изучает биохимия, наука которая существенно ближе к химии чем к биологии. Многие аспекты физического функционирования живых организмов изучает биофизика, которая очень тесно связана с физикой. Изучение большого количества биологических объектов неразрывно связано с такими науками как математическая статистика. Иногда как независимую науку выделяют экологию - науку о взаимодействии живых организмов с окружающей средой (живой и неживой природы). Как отдельная область знаний давно выделилась наука изучающая здоровье живых организмов. Эта область включает в себя ветеринарию и очень важную прикладную науку - медицину, отвечающую за здоровье людей.

Значение биологии для медицины:

Генетические исследования позволили разрабатывать методы ранней диагностики, лечения и профилактики наследственных болезней человека;

Селекция микроорганизмов позволяет получать ферменты, витамины, гормоны, необходимые для лечения ряда заболеваний;

Генная инженерия позволяет производить биологически активные соединения и лекарства;

Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого: Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь - это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь - это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко ре­гулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

2. Эволюционно-обусловленные уровни организации жизни: Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Биогеоценотический уровень организации жизни - представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни. Компоненты - Популяции различных видов; Факторы среды; Пищевые сети, потоки веществ и энергии; Основные процессы; Биохимический круговорот веществ и поток энергии, поддерживающие жизнь; Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз); Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищем).Науки, ведущие исследования на этом уровне: Биогеография, Биогеоценология Экология

Биосферный уровень организации жизни

Представлен высшей, глобальной формой организации биосистем - биосферой. Компоненты – Биогеоценозы; Антропогенное воздействие; Основные процессы; Активное взаимодействие живого и неживого вещества планеты; Биологический глобальный круговорот веществ и энергии;

Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность

Науки, ведущие исследования на этом уровне: Экология; Глобальная экология; Космическая экология; Социальная экология.

Поведение

Строение

Вирусы устроены очень просто. Они состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называют капсидом.

Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения.

Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц – капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизироваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов, основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клетке-хозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. Самосборка характерна и для многих других биологических структур, она имеет фундаментальное значение в биологических явлениях.

Спиральная симметрия. Лучшей иллюстрацией спиральной симметрии может служить вирус табачной мозаики (ВТМ), содержащий РНК. 2130 одинаковых белковых субъединиц составляют вместе с РНК единую целостную структуру – нуклеокапсид. У некоторых вирусов, например у вирусов свинки и гриппа, нуклеокапсид окружен оболочкой.

Бактериофаги. Вирусы, которые нападают на бактерий, образуют группу так называемых бактериофагов. У некоторых бактериофагов имеется явно выраженная икосаэдрическая головка, а хвост обладает спиральной симметрией.

ЭВОЛЮЦИОННОЕ ПРОИСХОЖДЕНИЕ ВИРУСОВ:

Строение сперматозоида.

Сперматозоид человека - это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в нее генетический материал мужчины.

В организме человека сперматозоид является самой маленькой клеткой тела (если учитывать только саму головку без хвостика). Общая длина сперматозоида у человека равна приблизительно 55 мкм.

Сперматозоид состоит из головки, средней части и хвоста.

Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка. В головке сперматозоида располагаются:

1) Ядро, несущее одинарный набор хромосом. Ядро сперматозоида значительно мельче ядер других клеток.

2) Акросома - видоизмененная лизосома - мембранный пузырек, несущий ферменты - вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объема головки и по своему размеру приблизительно равна ядру.

3) Центросома - центр организации микротрубочек, обеспечивает движение хвоста сперматозоида.

Позади головки располагается «средняя часть» сперматозоида. От головки среднюю часть отделяет небольшое сужение - «шейка». Позади средней части располагается хвост . Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион - гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.

Хвост, или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее ее. Его строение типично для клеточных жгутиков эукариот.

Классификация яйцеклеток

По количеству желтка

· Полилецитальные - содержат большое количество желтка (членистоногие, рыбы, кроме осетровых, рептилии, птицы).

· Мезолецитальные - содержат среднее количество желтка (осетровые рыбы, амфибии).

· Олиголецитальные - содержат мало желтка (моллюски, иглокожие).

· Алецитальные - не содержат желтка (млекопитающие, человек).

По расположению желтка

· Телолецитальные - желток смещён к вегетативному полюсу яйцеклетки. Противоположный полюс называется анимальным. Сюда относятся некоторые полилецитальные (рыбы, кроме осетровых, рептилии, птицы) и все мезолецитальные яйца (осетровые рыбы, амфибии).

· Гомо (изо)- лецитальные - желток распределён равномерно. Сюда относятся олиголецитальные ядра (моллюски, иглокожие, млекопитающие). Из гомолицетальных яйцеклеток, в ходе эволюции появились алецитальные яйцеклетки - без желтка. Такие клетки характерны для человека.

· Центролецитальные - желток расположен в центре яйцеклетки. Сюда относятся некоторые полилецитальные яйца (членистоногие). Это совершенно особый тип яиц. Анимально-вегетативная полярность этих яиц не выражена. В центре яйца расположено ядро, а по периферии - ободок свободной от желтка цитоплазмы.

ПОЛОВОЙ ДИМОРФИЗМ

Различия признаков муж. и жен. особей раздельнополых видов; частный случай полиморфизма. Возникновение П. д. связано с действием полового отбора. У многоклеточных животных П. д. полностью развивается к периоду половой зрелости и связан гл. обр. с различиями в строении половых органов, а также с различием вторичных половых признаков. Различают постоянный и сезонный П. д.

Постоянный - мало зависит или не зависит от сезонных условий. Он характерен для мн. беспозвоночных (особенно червей, членистоногих) и позвоночных; напр., у одних животных самцы значительно мельче самок, у других, наоборот, они крупнее. У самцов признаки П. д. бывают связаны с приспособлениями для удержания самки при копуляции (напр., присоски на передних ногах жука-плавунца), у самок - с откладыванием яиц, выкармливанием детёнышей (напр., яйцеклад у мн. насекомых, млечные железы у млекопитающих). Нередко самцы окрашены ярче самок (мн. бабочки, птицы и др.), что связано с покровительств. окраской и меньшей подвижностью самок, чаще осуществляющих заботу о потомстве. Проявлением П. д. являются и такие вторичные половые признаки, как «рога» жуков-оленей, бивни самцов нарвала и слона и др., представляющие оружие для «турнирных боёв» за самку.

Сезонный П. д., или брачный наряд, проявляюшийся только в период размножения, известен у мн. рыб (напр., яркая расцветка самца у гольяна) и земноводных (напр. развитие гребия и яркой расцветки у сампа тритона). У человека П. д., кроме различий в строении половых органов, выражается в более мощном развитии у мужчин скелета и мускулатуры, волосяного покрова на лице и ряде др. признаков, у женщин - в развитии грудных желёз, большей ширине бёдер и др. У цветковых растений постоянный П. д. наиб, ярко выражен у двудомных, напр. конопли, у к-рой муж. особи (посконь) отличаются от жен. (матерка) меньшей длиной стебля, менее густой листвой, большим выходом волокна.

Биологическое значение оплодотворения состоит в том, что при слиянии мужских и женских половых клеток, образуется новый организм, несущий признаки отца и матери. При образовании половых клеток в мейозе возникают гаметы с разным сочетанием хромосом, поэтому после оплодотворения новые организмы могут сочетать в себе признаки обоих родителей в самых различных комбинациях. В результате этого происходит колоссальное увеличение наследственного разнообразия организмов.

Основные этапы оплодотворения:

А)Сближение гамет

Б)Проникновение сперматозоида в яйцеклетку

В)Активация яйцеклетки

Г)Сингамия (слияние гамет)

Сближение объясняется совокупностью факторов: А)Координирование процессов гаметогенеза у мужских и женских особей и одновременное наступление стадии готовности к оплодотворению Б)Приспособления связанные с осеменением и совокуплением, которые обеспечивают попадание созревших половых клеток в места, где происходит оплодотворение В)Избыточная продукция сперматозоидов по сравнению с яйцеклетками Г)Крупные размеры яйцеклеток

Классификации партеногенеза

Существует несколько классификаций партеногенетического размножения.

1. По способу размножения

o Естественный - нормальный способ размножения некоторых организмов в природе.

o Искусственный - вызывается экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

2. По полноте протекания

o Рудиментарный (зачаточный) - неоплодотворённые яйцеклетки начинают деление, однако зародышевое развитие прекращается на ранних стадиях. Вместе с тем в некоторых случаях возможно и продолжение развития до конечных стадий (акцидентальный или случайный партеногенез).

o Полный - развитие яйцеклетки приводит к формированию взрослой особи. Эта разновидность партеногенеза наблюдается во всех типах беспозвоночных и у некоторых позвоночных.

3. По наличию мейоза в цикле развития

o Амейотический - развивающиеся яйцеклетки не проделывают мейоза и остаются диплоидными. Такой партеногенез (например, у дафний) является разновидностью клонального размножения.

o Мейотический - яйцеклетки проделывают мейоз (при этом они становятся гаплоидными). Новый организм развивается из гаплоидной яйцеклетки (самцы перепончатокрылых насекомых и коловраток), или яйцеклетка тем или иным способом восстанавливает диплоидность (например, путём эндомитоза или слияния с полярным тельцем)

4. По наличию других форм размножения в цикле развития

o Облигатный - когда он является единственным способом размножения

o Циклический - партеногенез закономерно чередуется с другими способами разножения в жизненном цикле (напрмер, у дафний и коловраток).

o Факультативный - встречающийся в виде исключения или запасного способа размножения у форм, в норме двуполых.

5. В зависимости от пола организма

o Гиногенез - партеногенез самок

o Андрогенез - партеногенез самцов

20. Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.

Генетика –наука, изучающая наследственность и изменчивость, а также закономерности передачи наследственных признаков от поколения к поколению.

Наследственность – это способность организмов сохранять и передавать особенности своего строения, функции и развития своему потомству.

Это свойство организмов, обеспечить материальную и функциональную преемственность в ряду поколений, а также характер индивидуального развития при постоянно меняющихся условиях среды.

Генотип - совокупность всех генов одного организма. Известный советский генетик М.Е.Лобашев определил генотип как систему взаимодействующих генов – совокупность всех признаков организма.

Родоначальником генетики считают австрийского ученого- монаха Грегора Менделя . Применил гибридологический метод, результатом проведенных исследований явилось открытие закономерностей наследования.

Томас Морган исследовал дигибридное скрещивание для двух признаков.

Методы исследования : гибридологический анализ – система скрещиваний, которая позволяет проследить в ряду поколений закономерности наследования и изменения признаков.

Цитологический, близнецовый, онтогенетический (проявление действия генов в онтогенезе) и другие. Широко применяются математическая статистика и анализ.

В развитии генетики можно выделить 3 этапа:

1 . (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган).

2 . (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). В это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики.

3 . (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана).

Медицинская генетика помогает понять взаимодействие биологических и средовых факторов (включая специфические) в патологии человека.

Знание основ медицинской генетики позволяет врачу понимать механизмы индивидуального течения болезни и выбирать соответствующие методы лечения.

21. Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство. Общее понятие о генетическом материале и его свойствах: изменение, репарация, передача, реализация генетической информации

Наследственность - свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируется общие признаки и свойства данного типа клеток и видов организмов, а также некоторые индивидуальные особенности родителей.

Изменчивость - свойство живых систем приобретать изменения и существовать в различных вариантах.

Несмотря на то, что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях. Таким образом, частичный материал должен обладать способностью к самовоспроизведению, чтобы в процессе размножения передавать наследственную информацию, на основе которой будет осуществлено формирование нового поколения. Для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянно свою организацию. Также он должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в имеющихся условиях.

Репарация - молекулярное восстановление. Механизм репарации основан на наличие в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Каждая хромосома представляет собой группу сцепления, их число равно гаплоидному набору хромосом. Диплоидный набор хромосом содержит 46 хромосом.

22. Человек как специфический объект генетического анализа. Методы изучения наследственности человека.

Насле́дственность - способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Кариотипирование – цитогенетический метод - позволяющий выявить отклонения в структуре и числе хромосом, которые могут стать причиной бесплодия, другой наследственной болезни и рождения больного ребенка.

27. Основные этапы и методы медико-генетического консультирования. Профилактика наследственных болезней

Медико-генетическое консультирование - это один из видов специализированной медицинской помощи, направленный на предотвращение рождения ребенка с наследственным заболеванием

Люди обращаются к врачу-генетику для того, чтобы получить прогноз здоровья будущего ребенка. Наиболее часто врачу генетику приходится проводить, так называемое, ретроспективное консультирование, которое осуществляется в семье, уже имеющей больного ребенка. В этом случае, основная цель генетического консультирования состоит в определении повторного риска рождения больного ребенка в семье и в планировании профилактических мероприятий. Реже врач проводит проспективное консультирование, которое осуществляется в семье, имеющей повышенный риск рождения больного ребенка.

Наиболее часто за такими консультациями обращаются супруги, состоящие в кровном родстве; пары при наличии случаев наследственного заболевания в родословной мужа или жены, а также при воздействии на беременную женщину неблагоприятных средовых факторов.

Медико-генетическое консультирование состоит из нескольких этапов.

Первый, заключается в постановке диагноза наследственного заболевания и определении типа его наследования.

Второй этап подразумевает установление генотипов консультирующихся и членов их семей с последующим расчетом риска возникновения заболевания.

На третьем этапе исследуется возможность профилактических мероприятий, и определяется наиболее эффективный способ их проведения.

Помимо этих трех основных задач большое значение при консультировании имеет психологическая и правовая помощь. Необходимо объяснить консультирующимся и членам их семей смысл результатов генетических анализов, помочь в решении морально-этических и правовых проблем, оказать психологическую помощь по решению вопросов планирования семьи, социальной адаптации и тл.

28. Характеристика методов дифференциального окрашивания хромосом

Все методы дифференциальной окраски хромосом позволяют выявлять их структурную организацию, которая выражается в появлении поперечной исчерченности, разной в разных хромосомах, а также некоторых других деталей.

Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания, позволяющих выявить комплекс поперечных меток на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов.

А. Q-окрашивание. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции - Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом.

Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы - G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода анализа.

В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

Г. C-окрашивание используют для анализа центромерных районов.

Д. T-окрашивание применяют для анализателомерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

29. Тест полового хроматина и его применение

Половой хроматин - это плотное окрашивающееся тельце, которое обнаруживается при микроскопии не делящейся в данный момент клетки. Он представляет собой спирализованную Х-хромосому. Исследование полового хроматина проводят при подозрении на генетические заболевания, связанные с изменением количества Х-хромосом. Для исследования используют клетки эпителия ротовой полости, получаемые из соскоба с внутренней поверхности щеки.

Методики определения полового хроматина , позволяющие выявить наличие половых хромасом, весьма просты и доступны для массового применения и скринирования. Особенно это относится к определению женского полового Х-хроматина в буккальном мазке с окраской. При микроскопировании у здоровой девочки (женщины) под оболочкой ядер клеток эпителия в 20-82 % случаев обнаруживают глыбки Х-хроматина (тельца Барра). Отсутствие их (как у мужчин), уменьшенное их количество или наличие двойных, тройных телец Барра - свидетельство аномального состава Х-хромосом и подтверждение хромосомной болезни. Обнаружение телец Барра у мальчиков говорит о наличии дополнительных Х-хромосом (вариантах синдрома Клайфельтера).

Определение мужского полового хроматина в буккальных мазках производят методом люминесцентной микроскопии при окраске хромосом: ярко флюоресцирует длинное плечо Y-хромосомы. Это важно для подтверждения синдромов дубль Y и дубль XY.

Показания к исследованию полового хроматина:

1) наличие клинических признаков синдрома Шерешевского-Тернера, синдрома Клайнфельтера; 2) наличие признаков интерсексуальности, сомнительного пола, гермафродитизма, явлений;

3) низкий рост у девочек, женщин (Х-хроматин);

4) высокий рост у мужчин (Y- и Х-хроматин);

5) умственная отсталость, психопатоподобные черты личности;

30. Характеристика методов пренатальной диагностики

Пренатальная диагностика - дородовая диагностика, с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 90 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 97 %, более 40 % нарушений развития сердца и др.

К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола ребенка.

Предопределние пола.

Существуют несколько гипотез, объясняющих, как происходит предопределение пола у человека:

Гипотеза Мартина : среди сперматозоидов выделяют - У-сперматозоиды и Х-сперматозоиды. У-сперматозоиды активнее, чем Х-сперматозоиды, но быстрее погибают. Если яйцеклетка готова к оплодотворению, то первыми ее оплодотворяют У-сперматозоиды, а если нет, то вероятность оплодотворения Х-сперматозоидом возрастает т.к. У-сперматозоиды быстро погибают.

Другая гипотеза была предложена Джеймсом, утверждавшим, что закономерности распределения полов обусловлены гормональными изменениями в организме родителей. Он считает, что повышение уровня тестостерона и эстерогенов у обоих родителей увеличивает вероятность рождения мальчиков, а возрастание уровня гонадотропина - девочек. Предложения основаны на клинических наблюдениях: лечение бесплодия гонадотропинами у женщин приводило к рождению дочерей, а у мужчин - сыновей.

37.Множественный аллелизм и полигенное наследование на примере человека.

Множественный аллелизм - наличие у гена множественных аллелей.

Создается так называемая серия аллелей, “рассеянных” в популяции данного вида. Итак, разнообразные стойкие состояния одного и того же гена, занимающего определенный локус в хромосоме, представленные то в виде нормального аллеля, то в виде мутации, получили название множественных аллелей. Примером множественного аллелизма может служит система групп крови АВО, открытая австрийским ученым К. Ландштейнером в 1900 г

Существует много признаков, наследование которых обусловлено не одной парой генов. Рост, телосложение, одаренность и цвет кожи у человека и многие другие признаки зависят от взаимодействия многих пар генов. Когда две или большее число независимых пар генов влияют на один и тот же признак сходным образом, так что их действие суммируется, говорят о полигенном наследовании данного признака, а такого рода гены называют множественными факторами. Цвет кожи в основном определяется двумя парами генов, которые называются A-a и B-b (здесь большими буквами обозначены гены, обусловливающие потемнение кожи). Генотип негра будет ААВВ, а белого - aabb.

При полигенном наследовании первое поколение (F1) бывает промежуточным между родительскими формами и весьма однотипным; напротив, второе поколение (F2) очень изменчиво и состоит из индивидуумов, распределяющихся по всему диапазону между исходными родительскими типами. Наследование цвета кожи у человека - относительно простой случай полигенной наследственности, так как здесь участвуют всего лишь две пары генов, обладающих выраженным действием. Наследование роста у человека зависит от значительно большего числа генов - возможно, от 10 пар и более. Кроме того, действие этих генов модифицируется внешними условиями, например количеством и качеством пищи. Как это на первый взгляд ни странно, низкий рост доминирует над высоким.

38.Наследование групп крови и резус-фактора .

Наследование групп крови.

В основе закономерностей наследования групп крови лежат следующие понятия. В локусе гена АВО возможны три варианта (аллеля) - 0, A и B, которые экспрессируются по аутосомно-кодоминантному типу. Это означает, что у лиц, унаследовавших гены А и В, экспрессируются продукты обоих этих генов, что приводит к образованию фенотипа АВ (IV). Фенотип А (II) может быть у человека, унаследовавшего от родителей или два гена А, или гены А и 0. Соответственно фенотип В (III) - при наследовании или двух генов В, или В и 0. Фенотип 0 (I) проявляется при наследовании двух генов 0. Таким образом, если оба родителя имеют II группу крови (генотипы AА или А0), кто-то из их детей может иметь первую группу (генотип 00). Если у одного из родителей группа крови A(II) с возможным генотипом АА и А0, а у другого B(III) с возможным генотипом BB или В0 - дети могут иметь группы крови 0(I), А(II), B(III) или АВ (IV).

Наследование резус-фактора.

Наследование резус-фактора кодируется тремя парами генов и происходит независимо от наследования группы крови. Наиболее значимый ген обозначается латинской буквой D. Он может быть доминантным - D, либо рецессивным - d. Генотип резус-положительного человека может быть гомозиготным - DD, либо гетерозиготным - Dd. Генотип резус-отрицательного человека может быть - dd.

Резус конфликт.

Гемолитическая болезнь плода и новорожденного это состояние, возникающее в результате несовместимости крови матери и плода по некоторым антигенам. Наиболее часто гемолитическая болезнь новорожденного развивается вследствие резус-конфликта. При этом у беременной женщины резус-отрицательная кровь, а у плода резус-положительная. Во время беременности резус-фактор с эритроцитами резус-положительного плода попадает в кровь резус-отрицательной матери и вызывает в ее крови образование антител к резус-фактору (безвредных для нее, но вызывающих разрушение эритроцитов плода). Распад эритроцитов приводит к повреждению печени, почек, головного мозга плода, развитию гемолитической болезни плода и новорожденного. В большинстве случаев заболевание быстро развивается после рождения, чему способствует поступление большого количества антител в

1.Биология как наука. Связь биологии с другими науками. Место и задачи биологии и подготовке врача. Новая биология.

Термин «биология» введен Ж.Б.Ламарком и Тревиранусом в 1802 году.

Биоло́гия - система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия.

В биологии выделяют следующие уровни организации:


  1. Клеточный , субклеточный и молекулярный уровень : клетки содержат внутриклеточные структуры, которыестроятся из молекул .

  2. Организменный и органно-тканевой уровень : у многоклеточных организмов клетки составляют ткани иорганы . Органы же, в свою очередь, взаимодействуют в рамках целого организма .

  3. Популяционный уровень : особи одного и того же вида, обитающие на части ареала, образуют популяцию .

  4. Видовой уровень : свободно скрещивающиеся друг с другом особи обладающие морфологическим,физиологическим, биохимическим сходством и занимающие определённый ареал (район распространения)формируют биологический вид .

  5. Биогеоценотический и биосферный уровень : на однородном участке земной поверхности складываются биогеоценозы , которые, в свою очередь, образуют биосферу .
Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения , зоология - животных, микробиология - одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология - сложные взаимодействия между биологическими молекулами, клеточная биология и цитология - основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия - строение тканей и организма из отдельных органов и тканей, физиология - физические и химические функции органов и тканей, этология - поведение живых существ, экология - взаимозависимость различных организмов и их среды.

Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы - палеобиология и эволюционная биология.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Биология тесно связана с другими науками и иногда очень трудно провести грань между ними. Изучение жизнедеятельности клетки включает в себя изучение молекулярных процессов протекающих внутри клетки, этот раздел называется молекулярная биология и иногда относится к химии а не к биологии. Химические реакции протекающие в организме изучает биохимия, наука которая существенно ближе к химии чем к биологии. Многие аспекты физического функционирования живых организмов изучает биофизика, которая очень тесно связана с физикой. Иногда как независимую науку выделяют экологию - науку о взаимодействии живых организмов с окружающей средой (живой и неживой природы) . Как отдельная область знаний давно выделилась наука изучающая здоровье живых организмов. Эта область включает в себя ветеринарию и очень важную прикладную науку - медицину, отвечающую за здоровье людей.

Биология поможет студентам понять существо жизненных процессов и правильно оценить возможности лечебного действия лекар​ственных веществ на организм человека.

2.Человек как объект биологии. Значение биологического и социального наследства для медицины.

Человек, отличаясь несомненным своеобразием в сравнении с другими живыми формами, тем не менее представляет собой закономерный результат и этап развития жизни на Земле, поэтому само его существование прямо зависит от общебиологических (молекулярных, клеточных, системных) механизмов жизнедеятельности.

Связь людей с живой природой не ограничивается рамками исторического родства. Человек был и остается неотъемлемой частью этой природы, влияет на нее и в то же время испытывает на себе влияние окружающей среды. Характер таких двусторонних отношений сказывается на состоянии здоровья человека.

Развитие промышленности, сельского хозяйства, транспорта, рост народонаселения, интенсификация производства, информационные перегрузки, усложнение отношений в семьях и на работе порождают серьезные социальные и экологические проблемы: хроническое психоэмоциональное напряжение, опасное для здоровья загрязнение среды жизни, уничтожение лесов, разрушение природных сообществ растительных и животных организмов, снижение качества рекреационных зон. Поиск эффективных путей преодоления указанных проблем невозможен без понимания биологических закономерностей внутривидовых и межвидовых отношений организмов, характера взаимодействия живых существ, включая человека, и среды их обитания. Уже отмеченного достаточно, чтобы уяснить, что многие разделы науки о жизни, даже в ее классическом формате, имеют очевидное прикладное медицинское значение.

На самом деле в наше время в решении проблем охраны здоровья и борьбы с болезнями биологические знания и «высокие биотехнологии» (генетическая, клеточная инженерия) начинают занимать не просто важное, но по-настоящему определяющее место. Действительно, минувшее XX столетие, наряду с тем, что оно, в соответствие с главными направлениями научно-технического прогресса, характеризовалось химизацией, технизацией, компьютеризацией медицины, стало также веком превращения последней в биомедицину.

Главным объектом внимания и профессиональной деятельности врача является человек, представляющий неотъемлемую часть природы. Известно, что отличительной чертой природы людей является наличие социальной составляющей, что проявляется в определенной специфике некоторых важных сторон их развития и жизнедеятельности. Вытекающие из указанной специфики особенности, наиболее заметно проявляющиеся в структуре онтогенеза, особенно постнатального (наличие только у людей периода отрочества и юности, отчетливо представленный период старости), на уровне генетико-популяционных процессов (доминирующая роль социальных факторов в определении состава популяций в сравнении с климатогеографическими), в биогеоценозах и биосфере (целенаправленное преобразование природы, очеловечивание среды жизни).

На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества - социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение , благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Приобретение этого качества указывает лишь на то, что отныне историческое развитие представителей вида Homo sapiens , т.е. человечества, подчиняется законам общественного, а не биологического развития.

Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Благодаря животному происхождению жизнедеятельность человеческого организма основывается на фундаментальных биологических механизмах, которые составляют его биологическое наследство. Биологическому наследству, формировавшемуся в процессе эволюции жизни, отводится видная роль в патологии человека. Крупный отечественный патолог И. В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов - приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.

Развитие жизни в одной из ее ветвей привело к появлению современного человека, объединяющего в себе биологическое и социальное. Характер взаимоотношения социального и биологического в человеке нельзя представить как простое сочетание в некоторой пропорции или прямое подчинение одного другому. Особенностью человеческого биологического является то, что оно проявляется в условиях определяющего действия законов общественного развития. Биологические процессы с необходимостью совершаются в организме человека, и им принадлежит фундаментальная роль в определении важнейших сторон жизнеобеспечения и развития. Вместе с тем эти процессы в популяциях людей не дают результата, закономерного и обязательного для популяций остальных представителей мира живых существ.

В качестве примера обратимся к процессу эволюции, которым в конечном итоге обусловливаются биологические механизмы главных уровней организации жизни - молекулярно-генетического, клеточного, онтогенетического, популяционно-видового, биогеоценотического. Генофонды популяций людей и в настоящее время изменяются в результате мутаций, комбинативной изменчивости, неслучайного подбора брачных пар, дрейфа генов, изоляции и некоторых форм естественного отбора. Однако благодаря действию в социальной сфере естественный отбор утратил здесь свою важнейшую биологическую функцию - видообразование. В таком случае среди людей исключается возможность завершенного эволюционного цикла путем достижения закономерного биологического результата - появления новых видов рода Человек. Сохраняющееся же действие элементарных эволюционных факторов, перечисленных выше, оборачивается в отношении человеческих популяций необычными с эволюционно-биологической точки зрения последствиями (например, не имеющим по масштабам равных в других видах организмов генетическим и, следовательно, фенотипическим разнообразием).

Знакомство с уже обширными, но еще мало систематизированными материалами, касающимися естественнонаучной стороны проблемы человека, указывает на неуклонный рост интереса к биологическим основам жизнедеятельности людей. Отчасти это обусловливается успехами биологической науки, открывающими перспективы активно влиять на ход многих физиологических процессов в организме. В немалой степени это связано с тем, что в условиях современной энергетической и технической оснащенности воздействие человечества на биосферу оказывается по своим результатам таким, что уже невозможно, даже с медицинской точки зрения, дальнейшее игнорирование людьми своей собственной биологии, своего биологического наследства.

3. Развитие понятия жизни на современном этапе. Определения понятия «Жизнь». Фундаментальные свойства живого.

Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков , учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь – это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

Существует много определений жизни , поскольку изменялись представления о ней, совершенствовалась научная картина мира и ее философское осмысление.

По Озангеру и Моровицу «Жизнь есть свойство материи, приводящее к сопряженной циркуляции биоэлементов в водной среде, движимая, в конечном счете, энергией солнечного излучения по пути увеличения сложности»

1878 г. Фридрих Энгельс «Диалектика природы» : «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой , причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»

Свойства живого:


  1. Самообновление , которое связано с постоянным обменом веществ и энергии, и в основе которого лежит особенность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот.

  2. с амовоспроизведение . Обеспечивает преемственность между сменяющимися генерациями биологических систем.

  3. саморегуляция . Базируется на совокупности потоков вещества, энергии и информации через живой организм;

  4. раздражимость . Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель.

  5. поддержание гомеостаза - относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы ;

  6. структурная организация - определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой - биогеоценозов;

  7. адаптация - способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

  8. репродукция (воспроизведение) . Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

  9. наследственность . Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

  10. изменчивость - свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

  11. индивидуальное развитие (процесс онтогенеза) - воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

  12. филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

  13. дискретность (прерывистость) и в то же время целостность . Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.

4. Происхождение жизни: гипотеза панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.

Согласно гипотезе панспермии , жизнь занесена из космоса либо в виде спор микроорганизмов, либо путем намеренного «заселения» планеты разумными пришельцами из других миров.

Прямых свидетельств в пользу космического происхождения жизни нет. Космос, однако, наряду с вулканами мог быть источником низкомолекулярных органических соединений, раствор которых послужил средой для развития жизни.

Современной наукой возраст Земли оценивается в 4,5-4,6 млрд. лет. Появление на планете первых водоемов, с которыми связывают зарождение жизни , отстоит от настоящего времени на 3,8-4 млрд. лет. Полагают, что около 3,8 млрд. лет назад жизнь могла стать определяющим фактором планетарного круговорота углерода. В породах вблизи местечка Фиг-Три (Южная Африка), имеющих возраст более 3,5 млрд. лет, обнаружены бесспорные следы жизнедеятельности микроорганизмов.

Таким образом, процесс образования примитивных живых существ шел относительно быстро. Ускорению процесса могло способствовать то, что простейшие органические вещества были из нескольких источников: абиогенно образующиеся в первичной атмосфере и в то же время поступающие с оседающей на поверхность планеты космической и вулканической пылью. Подсчитано, что Земля, проходя через пылевое облако в течение 1 млрд. лет, могла получить с космической пылью 10 млрд. т органического материала. Это всего в 300 раз меньше суммарной биомассы современных наземных организмов (3 10 12 т). Вулкан за одно извержение выбрасывает до 1000 т органических веществ.
Согласно гипотезе абиогенного происхождения жизни , жизнь возникла на Земле, когда сложилась благоприятная совокупность физических и химических условий, сделавших возможным абиогенное образование органических веществ из неорганических.

В середине прошлого столетия Л. Пастер окончательно доказал невозможность самозарождения жизни в теперешних условиях. В 20-х годах текущего столетия биохимики А. И. Опарин и Дж. Холдейн предположили, что в условиях, имевших место на планете несколько миллиардов лет назад, образование живого вещества было возможно. К таким условиям они относили наличие атмосферы восстановительного типа, воды, источников энергии (в виде ультрафиолетового (УФ) и космического излучения, теплоты остывающей земной коры, вулканической деятельности, атмосферных электрических явлений, радиоактивного распада), приемлемой температуры, а также отсутствие других живых существ.

Главные этапы на пути возникновения и развития жизни :

1) образовании атмосферы из газов, которые могли бы служить «сырьем» для синтеза органических веществ (метана, оксида и диоксида углерода, аммиака, сероводорода, цианистых соединений), и паров воды;

2) абиогенном (т.е. происходящем без участия организмов) образовании простых органических веществ, в том числе мономеров биологических полимеров - аминокислот, Сахаров, азотистых оснований, АТФ и других мононуклеотидов;

3) полимеризации мономеров в биологические полимеры, прежде всего белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды);

4) образовании предбиологических форм сложного химического состава - протобионтов, имеющих некоторые свойства живых существ;

5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни,-примитивных клеток;

6) биологической эволюции возникших живых существ.

5. Химический состав живых организмов

Основу живого составляют два класса химических соединений - белки и нуклеиновые кислоты . Причем в живых организмах, в отличие от неживого вещества, эти соединения характеризуются так называемой хиральной чистотой. В частности, белки построены только на основе левовращающих (поляризующих свет влево) аминокислот , а нуклеиновые кислоты состоят исключительно из правовращающих сахаров . Эта хиральная чистота сложилась на самых начальных этапах эволюции живого вещества. Считается, что минимальное время глобального перехода от полного хаоса к хиральной чистоте составляет от 1 до 10 млн. лет. Следовательно, в этом смысле зарождение жизни могло произойти на Земле относительно мгновенно за отрезок времени , в 5 тыс. раз меньший предполагаемого возраста планеты.

Белки ответственны прежде всего за обмен веществ и энергии в живой системе, т.е. за все реакции синтеза и распада, осуществляющиеся в любом организме от рождения и до смерти. Нуклеиновые кислоты обеспечивают способность живых систем к самовоспроизведению. Они - основа матрицы, удивительного "изобретения" природы. Матрица представляет своего рода чертеж, т. е. полный набор информации, на основе которого синтезируются видоспецифические молекулы белка.

Помимо белков и нуклеиновых кислот, в состав живых организмов входят липиды (жиры) , углеводы и очень часто аскорбиновая кислота .

В живых системах найдены многие химические элементы, присутствующие в окружающей среде, однако необходимы для жизни лишь около 20 из них. Эти элементы получили название биогенных. В среднем около 70% массы организмов составляет кислород , 18% - углерод , 10% - водород (вещества-органогены). Далее идут азот , фосфор , калий , кальций , сера , магний , натрий , хлор ,железо . Эти так называемые универсальные биогенные элементы, присутствующие в клетках всех организмов, нередко называют макроэлементами .

Часть элементов содержится в организмах в крайне низких концентрациях (не выше тысячной доли процента), но они также необходимы для нормальной жизнедеятельности. Это биогенные микроэлементы . Их функции и роль весьма разнообразны. Многие микроэлементы входят в состав ряда ферментов , витаминов , дыхательных пигментов , некоторые влияют на рост, скорость развития, размножение и т. д.

Присутствие в клетках целого ряда элементов зависит не только от особенностей организма, но и от состава среды, пищи, экологических условий, в частности от растворимости и концентрации солей в почвенном растворе. Резкая недостаточность или избыточность биогенных элементов приводит к ненормальному развитию организма или даже к его гибели. Добавки биогенных элементов в почву для создания их оптимальных концентраций широко используются в сельском хозяйстве.

Минеральные элементы, называемые также биоэлементами, в организме человека играют важную роль:
являются строительным материалом (кальций, фосфор, железо);
регулируют многие биохимические процессы в ходе обмена веществ (калий, натрий, йод, хлор, медь, марганец, селен и другие);
принимают участие в процессе свертывания крови (кальций);
поддерживают водный баланс организма (натрий, калий);
влияют на сохранение кислотно-щелочного равновесия;
входят в состав ферментов (энзимов).

Биоэлементы подразделяются на две группы:
Макроэлементы, присутствующие в больших количествах в пище (до нескольких процентов сухой массы) и необходимые организму в конкретных весовых количествах для правильного его функционирования.
Микроэлементы, необходимые организму в следовых количествах (порядка от 10-2 до 10-11% живой массы организма). Они очень важны для метаболических процессов и выработки гормонов и энзимов.
(дополнительно еще материал) Все живые организмы избирательно относятся к окружающей среде. Состав химических элементов живых систем отличаются от химических элементов земной коры. В земной коре O,Si,Al,Na,Fe,K,в живых организмах H,O,C,N. Всех других элементов менее 1%. В любом живом организме можно найти все элементы окружающей среды, правда, в разном количестве. Однако это не означает, что они необходимы. Необходимы 20 химических элементов – тех, без которых живая система обойтись не может. В зависимости от окружающей среды и обмена веществ набор этих веществ разный. Некоторые химические элементы входят в состав всех живых организмов (универсальные химические элементы) H,C,N,O.Na,Mg,P,S,Ca,K,Cl,Fe,Cu,Mn,Zn,B , V , Si , Co , Mo . Кремнийвходит в состав мукополисахаридов соединительной ткани.

В состав живых организмов входят 4 элемента, которые удивительно подошли для выполнения функций живого: О,С,Н,N. Они обладают общим свойством: они легко образуют ковалентные связи посредством спаривания электронов. Атомы С обладают свойством: могут соединяться в длинные цепи и кольца, с которыми могут связываться другие химические элементы. Соединений С очень много. Ближе всего к углероду кремний, но С образует СО2, который широко распространен в природе и доступен всем, а оксид кремния - элемент песка (нерастворим).

Макромолекулы – нуклеиновые кислоты, белки, полипептиды, липиды, полисахариды – полимеры, образованные мономерами, соединенными ковалентными связями. Любой живой организм на 90% состоит из 6 химических элементов – С,О,Н,Р,N,S – биоэлементы (биогенные элементы).

Клетка

Все живые организмы используют общие материалы для жизнедеятельности. Используются около 120 (20 аминокислот, 5 азотистых оснований, 4 класса липидов, малых молекул – простых кислот, воды, фосфатов – 70). Это продукты химической эволюции (органические соединения живых систем и компоненты неживой материи).

6. Биологическая роль воды

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются , молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6 - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Биология и история – межпредметные связи

Изучение биологии в школе предполагает рассмотрение современных экосистем и – при объяснении хода эволюции – объектов минувших геологических эпох, зачастую воспринимаемых учащимися абстрактно, как некая фантастика. Изменения же, происходившие в природе в течение исторического времени, в последние столетия и тысячелетия, остаются «за кадром». Школьный же курс истории посвящен развитию только человеческого общества и также не затрагивает изменений, происходивших в природе. А между тем сведения о таких изменениях способствуют формированию более правильного представления о развитии нашей цивилизации, осознанию сложной взаимосвязи между человечеством и природой, формируют экологическое, природоохранное мышление.

Сведения об истории отношений человека и природы, прошлом фауны и флоры лучше представлены в биологической и географической, нежели в исторической литературе. Поэтому межпредметные связи биологии с историей удобнее проводить учителям биологии, а не историкам. На уроке, в зависимости от темы, полезно привести 1–2 ярких примера из истории, – такие сведения с интересом воспринимаются учениками и неплохо запоминаются.

Более обширные исторические сведения можно использовать во внеклассной работе, в частности, при проведении предметных недель, различных викторин, при оформлении стенных газет. Учащимся, которые интересуются историей, можно поручить подготовить сообщения на историческую тему – но с упоминанием состояния окружающей среды и отношения к ней людей. Это помогает развивать у таких школьников интерес к биологии. Наконец, возможно проведение интегрированных уроков «Культура отдельных стран в определенные периоды», что предусмотрено программой по истории. Тут можно использовать материал по истории биологии, характеру использования природных ресурсов в разное время.

В разных классах могут затрагиваться разные темы – в соответствии с предметом изучения на уроках биологии и истории. Курс ботаники обычно совпадает с изучением истории Древнего мира, что позволяет рассматривать природные условия древних стран, их хозяйство и культуру.

Например, до нашей эры территории Испании, Греции, Италии, Китая были покрыты лесами. На юге Европы это были преимущественно буково-дубовые, грабовые, липовые леса. К началу нашей эры они в значительной мере уже были вырублены и заменялись зарослями кустарников. Походы римских завоевателей способствовали вырубке лесов и в центре Европы – в Германии, Франции. Здесь леса заменялись лугами, на которых выпасался скот.

На севере Африки, в Ливане были сильно подорваны запасы ливанского кедра – дерева, достигающего 7 м в обхвате ствола. Ливанский кедр описан в Библии, из него был построен дворец легендарного царя Соломона; из кедра строили храмы, делали корабли. Детали саркофага египетского фараона Тутанхамона, также сделанного из этого дерева, хорошо сохранились спустя 3200 лет. Сейчас ливанский кедр остался в очень малом количестве в нескольких местах в Сирии и Ливане и взят под строгую охрану.

Использование папируса как материала для производства своеобразной писчей бумаги подорвало его запасы, и он стал редким на большей части территории Египта уже к началу нашей эры.

Первое растение, исчезнувшее с лица Земли по вине человека – сильфий, высокое травянистое растение рода ферул семейства зонтичных, эндемик Севера Африки, росший возле города Кирены (ныне это территория Ливии). Корни сильфия славились как лекарство, подобно женьшеню. Его очень ценили и даже чеканили монеты с его изображением. Сбор растения был ограничен. Но римские завоеватели требовали от жителей Кирен такую непомерную дань в корнях сильфия, что его запасы быстро истощились, и к I в. н.э. (а по некоторым сведениям, и раньше) сильфий исчез. Современные его поиски успеха не имели, хотя в местах его бывшего распространения растут похожие растения рода Ferula .

История Древнего мира связана и с распространением культурных растений. Большинство из них выращивалось вблизи тех мест, где они возникли. Наиболее древние культуры существуют несколько тысячелетий: пшеница – в Египте, рис – в Китае, ячмень – в Месопотамии, горох, бобы, свекла – в Европе, редька – в Европе и Китае, капуста – в Средиземноморье, огурцы – в Индии. Строители пирамид в Египте ели чеснок, лук, огурцы, капусту и хлеб. Яблоневые сады в Египте существовали уже в середине II тысячелетия до н.э. Помимо культурных растений в пищу употребляли многие травы, о пищевой ценности которых ныне никто не вспоминает: зубровку, мяту, крапиву, лопух, мальву, лапчатку и т.д., а также водоросли. В Китае и Египте даже специально выращивали болотные и водные растения, чьи корни, стебли, листья употребляли в пищу: кувшинки, лотос, аир, стрелолисты, гелеохарис, рогоз, тростник, водяной орех, ряску и т.д.

Распространению новых сортов растений способствовали военные походы. Так, благодаря походам Александра Македонского, состоялось знакомство европейцев с бананами. Римский полководец Лукулл из походов в Малой Азии против Понтийского царя Митридата, привез в Рим вишни. Ассирийские цари Тигратпалассар, Саргон из своих походов привозили семена деревьев, в частности семена кедра, который стал распространяться в Малой Азии.

Большую роль в культуре играли и священные растения: лотос в Индии и Китае, египетский лотос (кувшинка Nymphaea lotos ) в Египте. В Древней Греции священными объявлялись дубовые и лавровые рощи у храмов. Считалось, что в деревьях обитают сверхъестественные существа – дриады. Особо старые большие дубы посвящались главному богу греков – Зевсу. От религиозных верований произошел обычай награждать героев венками из листьев лавра. Позднее, в Риме, стали популярны розы, из них делали венки и гирлянды. Букеты появились в Средние века. Розы как декоративные растения также были известны в Египте, а лилии – в Персии.

Первые школы садоводов возникли в Персии, там же начали создавать обширные парки, а в Древнем Вавилоне – наоборот, маленькие, закрытые садики, часто на террасах, как знаменитый сад царицы Семирамиды с искусственным орошением. В Древнем Риме декоративный и плодовый сад совмещался с огородом и посевами злаков. Римляне называли культурой переделанную человеком природу, ввели в практику декоративное подстригание кустов, деревьев, у них уже были теплицы – парники для огурцов.

«Отцом ботаники» назвывают эллинского ученого Теофраста – ученика «отца зоологии» Аристотеля. Теофраст в своей книге «Исследования о растениях» описал 480 видов растений. Древнеримский натуралист Плиний Старший в 37 томах книги «Естественная История» описал 1 тыс. растений, а писатели Катон Старший, Варрон, Колумелла составили руководства по растениеводству и сельскому хозяйству. В Китае в конце III тысячелетия до н.э., в книге «Бэн Цяо» («Книга о травах») было описано 10 тыс. лекарственных растений. Лекарственные растения были описаны и в Древнеиндийской книге «Аюрведа» («Наука о жизни»).

Школьный курс зоологии обычно совпадает по времени с изучением истории Средних веков. Тут можно использовать следующие факты.

Лев до X в. водился на юге Европы – на Балканах, на Кавказе, возможно, доходил до юга земель Киевской Руси. Фрески Киевского Софийского Собора изображают охоту князя Владимира Мономаха на зверя, похожего на льва. Часть зоологов считают, что это был тигр, который также в Средние века встречался в Средней Азии, на Кавказе, а вероятно и дальше к западу. Только в начале XX в. тигр был истреблен в Закавказье, Средней Азии, прилегающих районах Ирана, Афганистана. Лев же оттеснен в глубину Африки, и лишь в очень небольшом количестве сохранился в нескольких заповедниках Индии. Страусы до XX в. водились на севере Аравийской и Сирийской пустынь, а в I–II вв. н.э. – в Китае, о чем упоминается в древней китайской энциклопедии.

Численность животных в Средние века, по тогдашним описаниям, была очень велика. Кости диких свиней и прочих копытных, найденные при археологических раскопках на территории Киевской Руси, свидетельствуют о больших размерах этих животных. Напротив, домашние животные, в частности лошади, были мельче. В Европе водились животные, которые были истреблены позже, к XVIII–XIX вв. Дикий бык – тур, родоначальник крупного рогатого домашнего скота, был в основном истреблен к XV в., даже его последующая охрана не помогла – в XVII в. тур был истреблен полностью. Та же участь постигла дикую лошадь – тарпана. В Сибири, Восточной Европе водился дикий осел – кулан, ныне он в небольшом количестве сохранился в Средней и Центральной Азии. Также исчез из Европейской части ареала сайгак, известный в средние века на Украине, в степях России. Эти животные очень часто описывались в старинных летописях и книгах как обычные виды.

Охота – важная часть экономики в Средние века. В Западной Европе она часто объявлялась привилегией феодалов, права крестьян на нее ограничивались, что зачастую становилось причиной народных восстаний. В ряде стран, в частности в России, охотничьи трофеи были основным источником мяса.

Шкурки куниц, белок, бобров, лис служили в Киевской Руси своеобразными деньгами. «Кунами» платили дань, штрафы, их дарили гостям.

В XVII в. пушнина, поступающая в царскую казну России от охоты, составляла треть доходов государства – это до 200 тыс. шкурок соболей, 10 тыс. шкурок черных лисиц, 500 тыс. шкурок белок ежегодно. Охотились на зубров (фактически истреблены к XVIII в., ныне сохранились только в заповедниках), кабанов, оленей, птиц.

Охота была основным развлечением феодалов и монархов, они проводили массовые облавы на животных с участием сотен слуг. При этом добывали сотни крупных зверей, включая волков, медведей и т.д. На охоте использовались лошади, специальные охотничьи собаки, которых стали тогда выводить, прирученные гепарды, соколы, в частности кречет. Принимались меры и по охране животных: законы царя Ашоки в Индии положили начало заповедникам, польский король Сигизмунд запретил охоту на зубра в Беловежской Пуще в XVII в., король Франции Франциск I издавал подобные законы в XVI в.

Тем не менее уже в XVIII в. в Западной Европе была почти истреблена основная масса животных и охота потеряла хозяйственное значение, став скорее развлечением. Промысловая охота сохранилась только на севере и востоке России, но уже к XVIII в. там был почти истреблен соболь. Его запасы восстановились только в 20-е гг. XX в.

Объектами охоты и питания на Руси и в Европе были необычные, по современным понятиям, виды птиц: цапли, аисты, лебеди, журавли, выпи, пеликаны, орланы, колпицы, сороки, грачи. На юго-западе Европы, в Средиземноморье, была популярна охота на мелких певчих воробьиных птиц: синиц, скворцов, жаворонков, соловьев, воробьев, щеглов, трясогузок, ласточек, пеночек, камышовок, дроздов, мухоловок, славок и др. В ряде стран мелких птиц ловят и едят до сих пор.

В Средние века в Европе начали распространяться домашние животные. С XVII в. известны многие породы собак, скота, особенно в Англии и Голландии. Помимо кошек для борьбы с мышами использовали ручных хорьков.

К X–XII вв. в Китае были выведены основные породы золотой рыбки, в Европу они были завезены в XVII в. Монархи держали зверинцы, например, король Франции Людовик XI – волков, орлов, гепардов; английские короли в XVI в. – львов; царь Иван грозный – медведей, которых по его приказу натравливали на людей. Периодически в Европу привозили попугаев. В 1513 г. португальскому королю Мануэлю I привезли живого носорога.

Культура животноводства росла постепенно. Сначала свиней держали полудикими в больших загонах, в лесу, лишь потом началась их селекция. Для добычи меда пчел выкуривали дымом из ульев и обычно уничтожали. При монастырях развивалось прудовое рыбоводство.

Крестовые походы XI–XIII вв. из Европы в Малую Азию способствовали расселению в Европе черных тараканов (Blatta orientalis) и черных крыс (Rattus rattus) ; крысы стали причиной эпидемии чумы. В результате четвертого крестового похода (1202–1204 гг.) на юг Франции были завезены грены шелкопряда из Византии, в Европе началось выращивание шелкопрядов. Ранее гусеницы шелкопряда были по приказу императора Византии Юстиниана контрабандой доставлены в Константинополь из Китая, где шелк получали уже на протяжении ряда веков.

Начало освоения португальцами Африки в XVI в. привело к истреблению больших нелетающих птиц дронтов на островах Маврикий и Родригес. Это, вероятно, первые птицы, истребление которых человеком отмечено в истории. К концу XVII в. голландцы почти истребили черного носорога на крайнем юге Африки. В результате колонизации Америки там стали распространяться лошади, постельные клопы и домовая мышь. В Европу из Америки завезли и расселили индеек – в район Южного Рейна в XVI в., в Британию – в XVII в. Как дикие птицы индюки прижились в Чехии после завозов в XVIII–XIX вв. Сейчас там в заповедниках обитает около 530 диких индюков, которые внесены в списки диких птиц Европы в конце XX в.

К XVII в. в Европе многие феодалы, монархи разводили собак комнатных пород. Французский король Людовик XIV был большим любителем кошек. Кардинал Ришелье также держал у себя десятки кошек. В парках при дворцах, держали павлинов.

Продолжение следует