Русский язык

Зародышевые листки и развивающиеся из них ткани. «Четвертый зародышевый листок» позвоночных зародился у низших хордовых

Зародышевые листки – это динамичные скопления клеток, закономерно образующихся в эмбриогенезе определенным пространственным взаиморасположением.

Первым, кто обратил внимание на возникновение органов из зародышевых листков, или пластов, был К. Ф. Вольф (1759). Изучая развитие цыпленка, он показал, что из «неорганизованной, бесструктурной» массы яйца возникают зародышевые листки, дающие затем начало отдельным органам. К. Ф. Вольф различал нервный и кишечный листки, из которых развиваются соответствующие органы. Впоследствии X. Пандер (1817), последователь К. Ф. Вольфа, также описал наличие у куриного эмбриона зародышевых листков. К. М. Бэр (1828) обнаружил наличие зародышевых листков и у других животных, в связи с чем распространил понятие о зародышевых листках на всех позвоночных. Так, К. М. Бэр различал первичные зародышевые листки, называя их анимальным и вегетативным, из которых впоследствии, в процессе эмбрионального развития, возникают вторичные зародышевые листки, дающие начало определенным органам.

Описание зародышевых листков значительно облегчило изучение особенностей эмбрионального развития организмов и дало возможность установить филогенетические связи между животными, казалось весьма отдаленными в систематическом отношении. Это было блестяще продемонстрировано А. О. Ковалевским (1865, 1871), который по праву считается основателем современной теории зародышевых листков. А. О. Ковалевский на основании широких сравнительно-эмбриологических сопоставлений показал, что двуслойную стадию развития проходят почти все многоклеточные организмы. Он доказал сходство зародышевых листков у различных животных не только по происхождению, но и по производным зародышевых листков.

Однако в теории зародышевых листков есть ряд исключении. Согласно этой теории хорда развивается из энтодермы, нервная система – из эктодермы, а мышечная ткань – из мезодермы. Однако у пресмыкающихся, птиц, млекопитающих хорда развивается из мезодермы, возникающей из эктодермы. У асцидий определенные группы бластомеров дают одновременно и хорду, и нервную систему, т. е. органы, происходящие по теории зародышевых листков из различных зародышевых листков. Гладкая мышечная ткань радужной оболочки глаза, мышц волосяных сумок кожи млекопитающих развивается не из мезодермы, как того требует теория зародышевых листков, а из эктодермы.

Таким образом, теория зародышевых листков является крупнейшим морфологическим обобщением за всю историю эмбриологии. Благодаря ей возникло новое направление в эмбриологии, а именно эволюционная эмбриология, которая показала, что зародышевые листки, имеющиеся у подавляющего большинства животных, являются одним из свидетельств общности происхождения и единства всего животного мира.


ПРОИЗВОДНЫЕ ЗАРОДЫШЕВЫХ ЛИСТКОВ
С момента возникновения зародышевых листков их клеточный материал специализируется в направлении образования определенных эмбриональных зачатков, а также широкого круга тканей и органов. Уже на стадии образования зародышевых листков наблюдаются различия в их клеточном составе. Так, клетки эктодермы всегда меньше по размерам, более правильной формы и делятся быстрее, нежели клетки энтодермы. Возникающие в процессе эмбрионального развития в первично однородном материале, а также между клетками зародышевых листков различия называют дифференцировкой . Это заключительный этап эмбриогенеза.

Наружный зародышевый листок, или эктодерма , в процессе развития дает такие эмбриональные зачатки, как нервную трубку, ганглиозную пластинку, эктодерму кожи и внезародышевую эктодерму. Из этих эмбриональных зачатков возникают следующие ткани и органы. Нервная трубка дает нейроны и макроглию(клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами) головного и спинного мозга, хвостовую мускулатуру зародышей амфибий, а также сетчатку глаза. Из ганглиозной пластинки возникают нейроны и макроглия ганглиев соматической и вегетативной нервной системы, макроглия нервов и нервных окончаний, хроматофоры низших позвоночных, птиц и млекопитающих, хромаффинные клетки, мозговой слой надпочечников, скелетные закладки челюстной, подъязычной, жаберных дуг, хрящей гортани, а также эктомезенхима. Из плакод развиваются нейроны и макроглия некоторых ганглиев, или нервных узлов, головы, а также органы равновесия, слуха и хрусталик глаза. Кожная эктодерма дает начало эпидермису кожи и его производным – железам кожи, волосяному покрову, ногтям и пр., эпителию слизистой оболочки преддверия ротовой полости, влагалища, прямой кишки и их железам, а также зубной эмали. Кроме того, из кожной эктодермы развиваются мышечные волокна волосяных сумок кожи и радужная оболочка глаза. Из внезародышевой эктодермы возникает эпителий амниона, хориона и пупочного канатика, а у зародышей пресмыкающихся и птиц – Эпителий серозной оболочки.

Внутренний зародышевый листок, или энтодерма , в развития образует такие эмбриональные зачатки, как кишечную и желточную энтодерму. Из этих эмбриональных зачатков развиваются следующие ткани и органы. Кишечная энтодерма является исходной для образования эпителия желудочно-кишечного тракта и желез – железистой части печени, поджелудочной железы, слюнных желез, а также эпителия органов дыхания и их желез. Желточная энтодерма дифференцируется в эпителий желточного мешка. Внезародышевая энтодерма развивается в соответствующую оболочку желточного мешка.

Средний зародышевый листок, или мезодерма , в процессе развития дает такие эмбриональные зачатки, как хордальный зачаток, сомиты и их производные в виде дерматома, миотома и склеротома (scleros – твердый), а также эмбриональную соединительную ткань, или мезенхиму. Кроме того, мезодерма образует нефротом, мезонефрические, или вольфовы, каналы; мюллеровы, или парамезонефрические, каналы; спланхнотом; мезенхиму, выселяющуюся из спланхнотома; внезародышевую мезодерму. Из хордального зачатка у бесчерепных, круглоротых, цельноголовых, осетровых и двоякодышащих развивается хорда, которая у перечисленных групп животных сохраняется на всю жизнь, а у позвоночных заменяется скелетогенными тканями. Дерматом дает соединительнотканную основу кожи, миотом – поперечнополосатую мышечную ткань скелетного типа, а склеротом образует скелетные ткани – хрящевую и костную. Нефротомы дают начало эпителию почки, мочевыводящих путей, а вольфовы каналы – эпителию семявыносящих путей. Мюллеровы каналы формируют эпителий яйцевода, матки и первичный эпителиальный покров влагалища. Из спланхнотома развивается целомический эпителий, или мезотелий, корковый слой надпочечников, мышечная ткань сердца и фолликулярный эпителий половых желез. Мезенхима, которая выселяется из спланхнотома, дифференцируется в клетки крови, соединительную ткань, сосуды, гладкую мышечную ткань полых внутренних органов и сосудов. Внезародышевая мезодерма дает начало соединительнотканной основе хориона, амниона, желточного мешка.

Провизорные органы зародышей позвоночных или зародышевые оболочки. Взаимоотношения материнского организма и плода. Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.

Провизорные, или временные, органы образуются в эмбриогенезе ряда представителей позвоночных для обеспечения жизненно важных функций, таких, как дыхание, питание, выделение, движение и др. Недоразвитые органы самого зародыша еще не способны функционировать по назначению, хотя обязательно играют какую-то роль в системе развивающегося целостного организма. Как только зародыш достигает необходимой степени зрелости, когда большинство органов способны выполнять жизненно важные функции, временные органы рассасываются или отбрасываются.

Время образования провизорных органов зависит от того, какие запасы питательных веществ были накоплены в яйцеклетке и в каких условиях среды происходит развитие зародыша. У бесхвостых земноводных, например, благодаря достаточному количеству желтка в яйцеклетке и тому, что развитие идет в воде, зародыш осуществляет газообмен и выделяет продукты диссимиляции непосредственно через оболочки яйца и достигает стадии головастика. На этой стадии образуются провизорные органы дыхания (жабры), пищеварения и движения, приспособленные к водному образу жизни. Перечисленные личиночные органы дают возможность головастику продолжить развитие. По достижении состояния морфофункциональной зрелости органов взрослого типа временные органы исчезают в процессе метаморфоза.

В строении и функциях провизорных органов различных амниот много общего. Характеризуя в самом общем виде провизорные органы зародышей высших позвоночных, называемые также зародышевыми оболочками, следует отметить, что все они развиваются из клеточного материала уже сформировавшихся зародышевых листков. Некоторые особенности имеются в развитии зародышевых оболочек плацентарных млекопитающих.

Амнион представляет собой эктодермальный мешок, заключающий зародыша и заполненный амниотической жидкостью. Амниотическая оболочка специализирована для секреции и поглощения амниотической жидкости, омывающей зародыш. Амнион играет первостепенную роль в защите зародыша от высыхания и от механических повреждений, создавая для него наиболее благоприятную и естественную водную среду. Амнион имеет и мезодермальный слой из внезародышевой соматоплевры, который дает начало гладким мышечным волокнам. Сокращения этих мышц вызывают пульсацию амниона, а медленные колебательные движения, сообщаемые при этом зародышу, по-видимому, способствуют тому, что его растущие части не мешают друг другу.

Хорион (сероза) - самая наружная зародышевая оболочка, прилежащая к скорлупе или материнским тканям, возникающая, как и амнион, из эктодермы и соматоплевры. Хорион служит для обмена между зародышем и окружающей средой. У яйцекладущих видов основная его функция - дыхательный газообмен; у млекопитающих он выполняет гораздо более обширные функции, участвуя помимо дыхания в питании, выделении, фильтрации и синтезе веществ, например гормонов.

Желточный мешок имеет энтодермальное происхождение, покрыт висцеральной мезодермой и непосредственно связан с кишечной трубкой зародыша. У зародышей с большим количеством желтка он принимает участие в питании. У птиц, например в спланхноплевре желточного мешка, развивается сосудистая сеть. Желток не проходит через желточный проток, соединяющий мешок с кишкой. Сначала он переводится в растворимую форму под действием пищеварительных ферментов, продуцируемых энтодермальными клетками стенки мешка. Затем попадает в сосуды и с кровью разносится по всему телу зародыша.У млекопитающих нет запасов желтка и сохранение желточного мешка может быть связано с важными вторичными функциями. Энтодерма желточного мешка служит местом образования первичных половых клеток, мезодерма дает форменные элементы крови зародыша. Кроме того, желточный мешок млекопитающих заполнен жидкостью, отличающейся высокой концентрацией аминокислот и глюкозы, что указывает на возможность обмена белков в желточном мешке.Судьба желточного мешка у разных животных несколько различна. У птиц к концу периода инкубации остатки желточного мешка уже находятся внутри зародыша, после чего он быстро исчезает и к концу 6-х суток после вылупления полностью рассасывается. У млекопитающих желточный мешок бывает развит по-разному. У хищников он сравнительно большой, с сильно развитой сетью сосудов, а у приматов быстро сморщивается и исчезает без остатка до родов.

Аллантоис развивается несколько позднее других внезародышевых органов. Он представляет собой мешковидный вырост вентральной стенки задней кишки. Следовательно, он образован энтодермой изнутри и спланхноплеврой снаружи. У рептилий и птиц аллантоис быстро дорастает до хориона и выполняет несколько функций. Прежде всего это вместилище для мочевины и мочевой кислоты, которые представляют собой конечные продукты обмена азотсодержащих органических веществ. В аллантоисе хорошо развита сосудистая сеть, благодаря чему вместе с хорионом он участвует в газообмене. При вылуплении наружная часть аллантоиса отбрасывается, а внутренняя - сохраняется в виде мочевого пузыря.У многих млекопитающих аллантоис тоже хорошо развит и вместе с хорионом образует хориоаллантоисную плаценту. Термин плацента означает тесное наложение или слияние зародышевых оболочек с тканями родительского организма. У приматов и некоторых других млекопитающих энтодермальная часть аллантоиса рудиментарна, а мезодермальные клетки образуют плотный тяж, протягивающийся от клоакального отдела к хориону. По мезодерме аллантоиса к хориону растут сосуды, посредством которых плацента выполняет выделительную, дыхательную и питательную функции.

Производные эктодермы выполняют в основном покровную и чувствительную функции, производные энтодермы - функции питания и дыхания, а производные мезодермы - связи между частями зародыша, двигательную, опорную и трофическую функции.

Первым, кто обратил внимание на возникновение органов из зародышевых листков, или пластов, был К. Ф. Вольф (1759). Впоследствии X. Пандер (1817), последователь К. Ф. Вольфа, также описал наличие у куриного эмбриона зародышевых листков. К. М. Бэр (1828) обнаружил наличие зародышевых листков и у других животных, в связи с чем распространил понятие о зародышевых листках на всех позвоночных.

А. О. Ковалевским (1865, 1871), который по праву считается основателем современной теории зародышевых листков. А. О. Ковалевский на основании широких сравнительно-эмбриологических сопоставлений показал, что двуслойную стадию развития проходят почти все многоклеточные организмы. Он доказал сходство зародышевых листков у различных животных не только по происхождению, но и по производным зародышевых листков.

Таким образом, к концу XIX в. сложилась классическая теория зародышевых листков , содержание которой составляют следующие положения:

1. В онтогенезе всех Многоклеточных животных образуются два или три зародышевых листка, из которых развиваются все органы.

2. Зародышевые листки характеризуются определенным поло­жением в теле зародыша (топографией) и соответственно обозна­чаются как экто-, энто- и мезодерма.

3. Зародышевые листки обладают специфичностью, т. е. каж­дый из них дает строго определенные зачатки, одинаковые у всех животных.

4. Зародышевые листки рекапитулируют в онтогенезе пер­вичные органы общего предка всех Metazoa и потому гомоло­гичны.

5. Онтогенетическое развитие органа из того или иного заро­дышевого листка указывает на его эволюционное происхожде­ние из соответствующего первичного органа предка.

Наружный зародышевый листок, или эктодерма, в процессе развития дает такие эмбриональные зачатки, как нервную трубку, ганглиозную пластинку, эктодерму кожи и внезародышевую эктодермую. нервная трубка дает нейроны и макроглию(клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами) головного и спинного мозга, хвостовую мускулатуру зародышей амфибий, а также сетчатку глаза. Кожная эктодерма дает начало эпидермису кожи и его производным – железам кожи, волосяному покрову, ногтям и пр., эпителию слизистой оболочки преддверия ротовой полости, влагалища, прямой кишки и их железам, а также зубной эмали. Из внезародышевой эктодермы возникает эпителий амниона, хориона и пупочного канатика, а у зародышей пресмыкающихся и птиц – Эпителий серозной оболочки.


Внутренний зародышевый листок, или энтодерма, в развития образует такие эмбриональные зачатки, как кишечную и желточную энтодерму. Кишечная энтодерма является исходной для образования эпителия желудочно-кишечного тракта и желез – железистой части печени, поджелудочной железы, слюнных желез, а также эпителия органов дыхания и их желез. Желточная энтодерма дифференцируется в эпителий желточного мешка. Внезародышевая энтодерма развивается в соответствующую оболочку желточного мешка.

Средний зародышевый листок, или мезодерма, в процессе развития дает хордальный зачаток, сомиты и их производные в виде дерматома, миотома и склеротома (scleros – твердый). а также эмбриональную соединительную ткань, или мезенхиму. Из хордального зачатка развивается хорда, а у позвоночных заменяется скелетогенными тканями. Дерматом дает соединительнотканную основу кожи, миотом – поперечнополосатую мышечную ткань скелетного типа, а склеротом образует скелетные ткани – хрящевую и костную. Нефротомы дают начало эпителию почки, мочевыводящих путей, а вольфовы каналы – эпителию семявыносящих путей. Мюллеровы каналы формируют эпителий яйцевода, матки и первичный эпителиальный покров влагалища. Из спланхнотома развивается целомический эпителий, или мезотелий, корковый слой надпочечников, мышечная ткань сердца и фолликулярный эпителий половых желез. Мезенхима, которая выселяется из спланхнотома, дифференцируется в клетки крови, соединительную ткань, сосуды, гладкую мышечную ткань полых внутренних органов и сосудов. Внезародышевая мезодерма дает начало соединительнотканной основе хориона, амниона, желточного мешка.

Провизорные органы зародышей позвоночных или зародышевые оболочки. Взаимоотношения материнского организма и плода. Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.

Следует различать яйцевые и зародышевые оболочки. 1-е предохраняют яйцо от неблагоприятных воздейсвтий окружающей среды, вторые обеспечивают развитие зародыша (дыхание, питание, выделения), развиваются из клеточного материала уже сформировавшихся зародышевых листков.

Провизорные, или временные, органы образуются в эмбриогенезе ряда представителей позвоночных для обеспечения жизненно важных функций, таких, как дыхание, питание, выделение, движение и др. Недоразвитые органы самого зародыша еще не способны функционировать по назначению, хотя обязательно играют какую-то роль в системе развивающегося целостного организма. Как только зародыш достигает необходимой степени зрелости, когда большинство органов способны выполнять жизненно важные функции, временные органы рассасываются или отбрасываются.

Время образования провизорных органов зависит от того, какие запасы питательных веществ были накоплены в яйцеклетке и в каких условиях среды происходит развитие зародыша. У бесхвостых земноводных, например, благодаря достаточному количеству желтка в яйцеклетке и тому, что развитие идет в воде, зародыш осуществляет газообмен и выделяет продукты диссимиляции непосредственно через оболочки яйца и достигает стадии головастика. На этой стадии образуются провизорные органы дыхания (жабры), пищеварения и движения, приспособленные к водному образу жизни. Перечисленные личиночные органы дают возможность головастику продолжить развитие. По достижении состояния морфофункциональной зрелости органов взрослого типа временные органы исчезают в процессе метаморфоза.

Амнион представляет собой эктодермальный мешок, заключающий зародыша и заполненный амниотической жидкостью. Амниотическая оболочка специализирована для секреции и поглощения амниотической жидкости, омывающей зародыш. Амнион играет первостепенную роль в защите зародыша от высыхания и от механических повреждений, создавая для него наиболее благоприятную и естественную водную среду. Амнион имеет и мезодермальный слой из внезародышевой соматоплевры, который дает начало гладким мышечным волокнам. Сокращения этих мышц вызывают пульсацию амниона, а медленные колебательные движения, сообщаемые при этом зародышу, по-видимому, способствуют тому, что его растущие части не мешают друг другу.

Хорион (сероза) - самая наружная зародышевая оболочка, прилежащая к скорлупе или материнским тканям, возникающая, как и амнион, из эктодермы и соматоплевры. Хорион служит для обмена между зародышем и окружающей средой. У яйцекладущих видов основная его функция - дыхательный газообмен; у млекопитающих он выполняет гораздо более обширные функции, участвуя помимо дыхания в питании, выделении, фильтрации и синтезе веществ, например гормонов.

Желточный мешок имеет энтодермальное происхождение, покрыт висцеральной мезодермой и непосредственно связан с кишечной трубкой зародыша. У зародышей с большим количеством желтка он принимает участие в питании. У птиц, например в спланхноплевре желточного мешка, развивается сосудистая сеть. Желток не проходит через желточный проток, соединяющий мешок с кишкой. Сначала он переводится в растворимую форму под действием пищеварительных ферментов, продуцируемых энтодермальными клетками стенки мешка. Затем попадает в сосуды и с кровью разносится по всему телу зародыша.У млекопитающих нет запасов желтка и сохранение желточного мешка может быть связано с важными вторичными функциями. Энтодерма желточного мешка служит местом образования первичных половых клеток, мезодерма дает форменные элементы крови зародыша. Кроме того, желточный мешок млекопитающих заполнен жидкостью, отличающейся высокой концентрацией аминокислот и глюкозы, что указывает на возможность обмена белков в желточном мешке.

Аллантоис развивается несколько позднее других внезародышевых органов. Он представляет собой мешковидный вырост вентральной стенки задней кишки. Следовательно, он образован энтодермой изнутри и спланхноплеврой снаружи. Прежде всего это вместилище для мочевины и мочевой кислоты, которые представляют собой конечные продукты обмена азотсодержащих органических веществ. В аллантоисе хорошо развита сосудистая сеть, благодаря чему вместе с хорионом он участвует в газообмене. При вылуплении наружная часть аллантоиса отбрасывается, а внутренняя - сохраняется в виде мочевого пузыря.У многих млекопитающих аллантоис тоже хорошо развит и вместе с хорионом образует хориоаллантоисную плаценту.

Термин плацента означает тесное наложение или слияние зародышевых оболочек с тканями родительского организма.

Взаимоотношения материнского организма и плода.

Находясь в чреве матери, плод не испытывает нужды самостоятельно поглощать пищу и кислород, защищаться от атмосферных осадков или заботиться о поддержании температуры своего тела. Все это обеспечивает ему материнский организм. Однако благодаря развитию плода в его организме постепенно созревают все те физиологические механизмы, которые необходимы ему с первой минуты самостоятельной жизни. Отношения в системе мать - плод строятся так, чтобы не только защитить плод от неблагоприятного воздействия факторов окружающей среды, но и создать дополнительный внешний стимул для его развития. Значительная роль в формировании иммунологических отношений в системе мать-плод принадлежит плаценте , где создаются различные условия для прохождения антигенов и иммуноглобулинов в обоих направлениях.

Плацента - достаточно надёжный барьер, препятствующий взаимному проникновению клеток матери и плода, что является определяющим фактором в комплексе естественных механизмов, создающих иммунологическую защиту плода и норм, течение беременности.

Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.

У курящих женщин вероятность рождения мертвого ребенка или самопроизвольного выкидыша в 2 раза выше, чем у некурящих. При курении никотин, легко проникая к плоду через плаценту, может вызывать у него развитие «табачного синдрома». Ежедневное выкуривание беременной 5 сигарет и более подавляет дыхательные движения плода, при этом их уменьшение наблюдается уже через 30 минут после выкуривания первой сигареты. Может наблюдаться даже нарушение ритма сердечных сокращений у внутриутробного плода. Никотин вызывает спазм артерий матки, обеспечивающих детское место и плод всеми жизненными продуктами. В результате нарушается кровоток в плаценте и развивается плацентарная недостаточность, поэтому плод недополучает объем кислорода и питательных продуктов. Особенно чувствительны дети курящих матерей к инфекциям дыхательных путей. Они в 6,5 раз чаще болеют бронхитами, бронхиальной астмой и пневмониями на первом году жизни, чем дети некурящих матерей.

Существенный вред на состояние здоровья матери и плода оказывает так называемое пассивное курение, то есть пребывание некурящей беременной в накуренном помещении. Ежедневное курение отца в присутствии беременной также способно вызывать гипотрофию у плода, хотя и в меньшей степени, чем когда курит сама мать. Алкоголь легко проникает к плоду через плаценту и наносит непоправимый вред его организму. Проникая через клеточные барьеры, окружающие половые клетки, алкоголь подавляет процесс их созревания. Повреждение алкоголем женских половых клеток является причиной самопроизвольных выкидышей, преждевременных родов и мертворождений.У ребенка, рожденного от людей, употребляющих наркотики могут встречаться расстройства желудка, органов дыхания, печени, сердца. Нередко встречаются параличи, чаще всего ног. У ребенка происходит нарушение мозга, и, как следствие, различные формы слабоумия, психоз, нарушения памяти. Новорожденные наркоманов постоянно пронзительно кричат, не переносят яркого света, звука, малейших прикосновений.

Общие и частные критические периоды в развитии человека. Неблагоприятные факторы, действующие на женский организм, нарушающие нормальное строение и созревание половых клеток. Причины мутаций или аномалий развития. Действие фармакологических веществ на организм беременной женщины и плод.

Эти периоды получили название критических, а повреждающие факторы - тератогенны. Некоторые ученые полагают, что наиболее чувствительными к самым разнообразным внешним воздействиям являются периоды развития, характеризующиеся активным клеточным делением или интенсивно идущими процессами дифференциации . Критические периоды не рассматривают как наиболее чувствительные к факторам среды вообще, т.е. независимо от механизма их действия. Вместе с тем установлено, что в некоторые моменты развития зародыши чувствительны к ряду внешних факторов. Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.

П. Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыща, второй - с формированием плаценты .

Имплантация приходится на первую фазу гаструляции, у человека -на конец 1-й -начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза. Повреждающее действие во время имплантации приводит к ее нарушению, ранней смерти зародыша и его абортированию. По некоторым данным, 50-70% оплодотворенных яйцеклеток не развиваются в период имплантации. По-видимому, это происходит не только от действия патогенных факторов в момент начавшегося развития, но и в результате грубых наследственных аномалий.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки развития. Факторы, оказывающие повреждающее воздействие, не всегда представляют собой чужеродные для организма вещества или воздействия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время. К ним относят кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение.

Неблагоприятные факторы, действующие на женский организм, нарушающие нормальное строение и созревание половых клеток.

Причины мутаций или аномалий развития.

Мута́ция - стойкое преобразование генотипа , происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза . Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Действие фармакологических веществ на организм беременной женщины и плод.

Лекарственные вещества, проведшие через плаценту, попадают в клетки плода, нередко нарушая их развитие и функцию. Они могут влиять на ДНК, РНК, рибосомы, на активность ферментов клетки. При этом страдает синтез структурных и ферментных белков клетки. Конечный эффект этих нарушений может проявиться в организме плода в виде изменений биохимических, физиологических и морфологических процессов, недостаточности функций органов, в аномалиях их анатомического развития. Лекарственные вещества могут вызывать не только структурные уродства, но и иммунологические, эндокринные и биохимические сдвиги, которые предрасполагают к появлению недоношенных и слабых детей с плохой сопротивляемостью к различным заболеваниям и вредным факторам окружающей среды.

Преформизм и эпигенез. Современные представления о механизмах эмбрионального развития. Степень и конкретные пути контроля со стороны генома и уровень автономности различных процессов в ходе онтогенеза.

В истории человечества существует давний интерес к природе размножения и развития. Эмбриология - наука о зародышевом развитии - одна из древнейших научных дисциплин. От античных времен ведут начало две противоположные точки зрения на причины и движущие силы индивидуального развития организмов преформизм и эпигенез.

Сторонники преформизма (от латинского praeformo - заранее образую, предобразую) исходили из того, что все формы, структуры и свойства будущего организма заложены в нем еще до рождения, даже в половых клетках. Более того, уже в этом еще не родившемся организме содержатся невидимые (очень маленькие) зачатки будущих поколений. Когда стало ясно, что новый организм происходит от слияния яйца и сперматозоида, мнения преформистов о первоисточнике развития резко разделились. Большинство считало, что организм заложен в яйце (оно гораздо крупнее и содержит питательные вещества), тогда как сперматозоид лишь активирует яйцо к развитию. Сторонников этой теории называли овистами (от латинского ovum -яйцо). Другие - их называли анималькулистами (от латинского animalculum зверек,что означало сперматозоид, то есть микроскопический зверек) - видели предсуществующую форму организма именно в сперматозоиде. Яйцо по мнению анималькулистов является лишь питательной средой для развития сперматозоида, подобно тому, как плодородная почва служит кормилицей для прорастающего семени.

В противоположность преформизму сторонники эпигенеза (от греческих epi - над, сверх, после и genesis - происхождение, возникновение) представляли зародышевое развитие как процесс, осуществляемый путем последовательных новообразований структур из недифференцированной массы оплодотворенного яйца. Эпигенетики невольно приходили к признанию неких внешних нематериальныхьфакторов, управляющих морфогенезом. Так, уже Аристотель в противоречие Гиппократу утверждал, развитием управляет некая высшая цель, жизненная сила - энтелехия.

Биология развития стремится выяснить степень и конкретные пути контроля со стороны генома и одновременно уровень автономности онтогенетических процессов, исследуя конкретные онтогенетические механизмы.

Механизмы онтогенеза:

1. пролиферация или размножение клеток

2. миграция или перемещение клеток

3. сортировка клеток, те скопление клеток только с определенными клетками

5. дифференцировка клеток или специализация.

6. Клетка приобретает свои морфологические и функциональные особенности

7. контактные взаимодействия: индукция и компетенция

8. дистантное взаимодействие клеток, тканей и органов

Все эти процессы протекают в определенных пространственно-временых рамках, подчиняясь принципу целотности развивающегося организма.

Общие закономерности онтогенеза многоклеточных. Основные механизмы роста и морфогенеза. Пусковое действие генов. Гипотеза дифференциальной активности генов. Взаимодействие частей развивающегося организма. Эмбриональная индукция. Опыты Шпемана.

Пусковое действие генов. Уже в зиготе имеется вся информация об особенностях будущего организма. В период дробления формируются абсолютно равнозначные или тотипотентные бластомеры. Они обладают всей генетической информацией о будущем организме и могут ее реализовать. Подтверждение этого механизма - наличие монозиготных близнецов. Для объяснения дифференцировки клеток во время развития использована гипотеза дифференциальной активности (экспрессии) генов. «В разные этапы онтогенеза, а также в различных частях зародыша функционируют то одни гены, то другие». Считают, что регуляция генной активности зависит от взаимодействия ДНК и гистоновых и негистоновых белков. Гистогны блокируют транскрипцию. На них могут действовать негистоновые белки, а также различные в-ва, поступающие из цитоплазмы в ядро. Они могут освобождать определенные участки ДНК от гистонов, т.е вкл и выкл гены. Экспрессия генов - сложный этапный процесс, включает внутриклеточные и тканевые процессы. Процесс онтогенза представляет собой цепь реакций, регулирующихся по принципу обратной связи. Накопление в этой цепи в-в образующихся в результате деятельности генов может либо тормозить, либо стимулировать экспрессию генов. Большая часть 9/10 мРНК ОДИНАКОВА по составу в клетках разных стадий онтогенеза. Он необходима для обеспечения жизнедеятельности клеток и считывается с генов «дом. Хоз-ва». 1/10 - мРНК специфичные для тканей, т.е определяют специализацию клеток, они определяются уникальными нуклеотидными последовательностями- генами роскоши и кодируют уникальные белки, белки роскоши.

В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма. Существует множество типов онтогенеза (например, личиночный, яйцекладный, внутриутробный). У высших многоклеточных организмов онтогенез обычно делят на два периода - эмбриональное развитие (до перехода к самостоятельному существованию) и постэмбриональное развитие (после перехода к самостоятельному существованию).

Эмбриональный период онтогенеза многоклеточных животных включает следующие стадии: зиготы, ее дробления, образования бластулы (однослойного зародыша), гаструлы (двухслойного зародыша) и нейрулы (трехслойного зародыша ).

Вскоре после образования зиготы начинается ее дробление. Дробление - это ряд митотических делений яйца. На ранних стадиях дробления гены яйца не функционируют, и лишь в конце дробления начинается синтез мРНК.

Для яиц с низким содержанием желтка характерно полное равномерное дробление, а для яиц с высоким содержанием желтка - полное неравномерное или неполное. У многих организмов в результате дробления образуется морула - шаровидное скопление бластомеров. Иногда морулу рассматривают как отдельную стадию эмбрионального развития, а иногда как разновидность следующей стадии - бластулы. Существует множество типов бластул: морула, равномерная и неравномерная целобластула, равномерная и неравномерная стерробластула, дискобластула, перибластула. При неравномерном дроблении более крупные бластомеры называются макромеры , а более мелкие - микромеры . Полость бластулы называется бластоцел ь, или первичная полость тела.

Затем в ходе гаструляции бластула превращается в двуслойный зародыш - гаструлу. Существует множество типов гаструляции. У ряда организмов между эктодермой и энтодермой сохраняется первичная полость тела. Центральная же полость гаструлы (гастроцель, или первичная кишка) сообщается с внешней средой с помощью бластопора, или первичного рта.

В ходе нейруляции гаструла превращается в трехслойный зародыш, который у хордовых называется нейрула. Сущность нейруляции заключается в образовании мезодермы - третьего зародышевого листка. Мезодерма представляет собой клеточные пласты, расположенные между энтодермой и эктодермой.

Постэмбриональный период продолжается от перехода организмов к существованию вне яйца или зародышевых оболочек до полового созревания. В постэмбриональном периоде завершаются процессы органогенеза, роста и дифференцировки.

Эмбриональная индукция - взаимодействие между частями развивающегося организма у многоклеточных. Согласно этой гипотезе, существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этого клетки. В условиях отсутствия клеток-организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов.

Морфогенез- возникновение и развитие органов, систем и частей телаорганизмов как в индивидуальном (онтогенез), так и в историческом, или эволюционном, развитии (филогенез). Изучение особенностей морфогенеза на разных этапах онтогенеза в целях управления развитием организмов составляет основную задачу биологии развития, а также генетики, молекулярной биологии, биохимии, эволюционной физиологии, и связано с изучением закономерностей наследственности.

Процесс морфогенеза контролирует организованное пространственное распределение клеток во время эмбрионального развития организма. Морфогенез может проходить также и в зрелом организме, в клеточных культурах или опухолях.

Опыт Шпена.

Направление первых работ Ш. по эмбриональному развитию было подсказано ему его коллегой по Гейдельбергскому университету Густавом Вольфом. Этот ученый обнаружил, что если из развивающегося глаза эмбриона тритона удалить хрусталик, то из края сетчатки будет развиваться новый хрусталик. Ш. был поражен опытами Вольфа и решил продолжить их, сделав упор не столько на том, как регенерирует хрусталик, сколько на том, каков механизм его изначального формирования.

В норме хрусталик глаза тритона развивается из группы клеток эктодермы. Ш. доказал, что сигнал к формированию хрусталика поступает именно от глазного бокала. Он обнаружил, что если удалить эктодерму, из которой должен образоваться хрусталик, и заменить ее клетками из совершенно иной области эмбриона, то из этих пересаженных клеток начинает развиваться нормальный хрусталик. Для решения своих задач Ш. разработал чрезвычайно сложные методы и приборы, многие из которых по сей день используются эмбриологами и нейробиологами для тончайших манипуляций с отдельными клетками.

Взаимодействие частей развивающегося зародыша. Эмбриональная индукция. Э.и.- явление, когда эмбриональные закладки предопределяют закладку и развитие других тканей и органов зародыша. Осуществление индукции возможно лишь при условии, что клетки реагирующей системы СПОСОБНЫ ВОСПРИНЯТЬ ВОЗДЕЙСТВИЕ, т.е являются компетентными. В этом случае они отвечают образованием соответствующих структур. Компетенция возникает на ОПРЕДЕЛЕННЫХ стадиях развития и сохраняется ограниченное время, затем может появиться компетенция к другому индуктору. Развитие зародыша рассматривается, как система взаимодействия зачатков. КАК КАСКАДНЫЕ, ИЕРАРХИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ. Индукция многих структур зависит от предшествующих индукционных событий.

Типы гаструляции.

По окончании периода дробления зародыши всех многоклеточных животных вступают в период образования зародышевых слоев (листков). Этот этап называется гаструляцией.

В процессе гаструляции различают два этапа. Сначала образуется ранняя гаструла, имеющая два зародышевых листка: наружный – эктодерму и внутренний – энтодерму. Затем наступает поздняя гаструла, когда образуется средний зародышевый листок – мезодерма. Образование гаструлы протекает по-разному.

Выделяют 4 типа гаструляции:

1) Иммиграция - гаструляция путем выселения отдельных клеток из бластодермы внутрь. Впервые описана И. И. Мечниковым у зародышей медуз. Иммиграция может быть униполярной, биполярной и мультиполярной, т. е. при иммиграции клетки выселяются из одной, двух или нескольких зон сразу. Иммиграция, наблюдающаяся у кишечно-полостных, стоящих в эволюционном ряду ниже всех многоклеточных, является самым древним типом гаструляции.

2) Инвагинация - гаструляция путем впячивания вегетативного полюса. Она характерна для низших хордовых, иглокожих, некоторых кишечно-полостных, т.е. она наблюдается у зародышей, развивающихся из изолецитальных яиц, характеризующихся полным равномерным дроблением.

3) Эпиболия - обрастание.

Если зародыш развивается из телолецитального яйца, а на вегетативном полюсе бластулы находятся крупные, богатые желтком макромеры, то прогибание вегетативного полюса затруднено, и гаструляция происходит за счет быстрого размножения микромеров, которые обрастают вегетативный полюс. При этом макромеры оказываются внутри зародыша. Эпиболия наблюдается у земноводных, она сочетается с перемещением бластодермы внутрь зародыша (инвагинация) на границе анимального и вегетативного полюсов, т. е. эпиболия в чистом виде практически не встречается.

4) Деляминация - расслоение. При этом типе гаструляции, наблюдающейся у некоторых кишечно-полостных, имеющих бластулу в виде морулы (отсутствует в бластуле бластоцель), клетки бластодермы делятся на наружные и внутренние. В результате за счет наружных клеток образуется эктодерма гаструлы, а за счет внутренних - энтодерма.

Рис. 4. Типы гаструл: а – инвагинационная гаструла; б, в – две стадии развития иммиграционной гаструлы; г, д – две стадии развития деляминационной гаструлы; е, ж – две стадии развития эпиболической гаструлы; 1 – эктодерма; 2 – энтодерма; 3 – бластоцель.

Несмотря на разнообразие типов гаструляции, сущность процесса сводится к одному: однослойный зародыш (бластула) превращается в двухслойный зародыш (гаструлу).

1.5.4. Способы образования третьего зародышевого листка

У всех многоклеточных животных, кроме губок и кишечнополостных, вслед за образованием экто- и энтодермы развивается третий зародышевый листок - мезодерма. Мезодерма имеет двойное происхождение. Одна ее часть имеет вид рыхлой массы клеток, выселяющихся поодиночке, из других зародышевых листков. Эта часть называется мезенхимой. Из мезенхимы впоследствии образуются все виды соединительной ткани, гладкая мускулатура, кровеносная и лимфатическая системы. В процессе филогенеза она возникла раньше. Вторая часть мезодермы называется мезобластом. Она возникает в виде компактного двусторонне-симметричного зачатка. Мезобласт образовался в филогенезе позже мезенхимы. В онтогенезе он развивается различными способами.

Телобластический способ , главным образом, наблюдается у первичноротых животных (типично протекает у моллюсков, кольчатых червей, ракообразных). Он проходит путем врастания многоклеточных зачатков с двух сторон бластопора или путем внедрения в этих же местах двух крупных клеток - телобластов. В результате размножения телобластов, от которых отделяются мелкие клетки, формируется мезодерма.

Энтероцельный способ наблюдается у вторичноротых (типичное течение у иглокожих, ланцетника). У них мезобласт отшнуровывается от стенки первичной кишки в виде парных мезодермальных карманов с зачатками целомической полости внутри.

Следовательно, на стадии образования зародышевых листков имеет место один и тот же процесс, варьирующий только в деталях. Сущность происходящих явлений заключается в дифференцировке трех зародышевых слоев: наружного - эктодермы, внутреннего - энтодермы и находящегося между ними среднего слоя - мезодермы. В дальнейшем за счет этих слоев развиваются различные ткани и органы.

Рис. 5. Способы образования третьего зародышевого листка: А - телобластический, Б – энтероцельный, 1 – эктодерма, 2 – мезенхима, 3 – энтодерма, 4 – телобласт (а) и целомическая мезодерма (б).

У позвоночных животных есть особый эмбриональный зачаток, называемый нервным гребнем (он расположен рядом с нервной трубкой). Из клеток нервного гребня образуется удивительно много разных структур, от некоторых нервных узлов до большей части черепа. Многие современные ученые считают нервный гребень четвертым зародышевым листком, наряду с эктодермой, энтодермой и мезодермой. У ближайших родственников позвоночных - оболочников - есть группа зародышевых клеток, близкая по свойствам к нервному гребню, которая дифференцируется в пигментные клетки покровов. Вероятно, эта группа клеток сохранилась и у позвоночных, значительно расширив набор путей своей дифференцировки. Кроме того, у позвоночных появились новые регуляторные гены с экспрессией, специфичной для нервного гребня; это было облегчено тем, что в их эволюции произошла полногеномная дупликация. Таким образом, две уникальные особенности подтипа позвоночных - полногеномная дупликация и присутствие «четвертого зародышевого листка» - наверняка связаны между собой.

Можно ли свести устройство всех животных к единой схеме? Простого ответа на этот вопрос нет. Все зависит от детальности требуемой схемы и от того, как именно мы ее собираемся использовать. Тем не менее вопрос о наличии у животных «единого плана строения» рассматривался в классической зоологии как важнейший, и между сторонниками разных ответов на него бывали грандиозные споры (см., например: Б. Жуков, 2011. Спор двух истин). И правда, вопрос этот важен - хотя бы потому, что любая наука стремится описывать свои объекты по общему для всех шаблону, а «единый план строения» как раз и мог бы предоставить такой шаблон.

В середине XIX века эмбриология подарила эволюционной науке ценное обобщение, позволившее, по крайней мере, сравнивать сколь угодно разных животных между собой. Было установлено, что зародыш любого (или почти любого) животного, достигнув определенной стадии, делится на устойчивые слои клеток, которые называются зародышевыми листками . Всего зародышевых листков три: эктодерма (наружный), энтодерма (внутренний) и мезодерма (средний). Из эктодермы образуется кожный покров (эпидермис) и нервная система. Из энтодермы образуется кишечник - точнее, пищеварительный тракт - и органы, развивающиеся как его выросты, например печень. Из мезодермы, как правило, образуются опорно-двигательная, кровеносная и выделительная системы.

У некоторых животных (например, у гидроидных полипов, к которым относится пресноводная гидра) есть эктодерма и энтодерма, но мезодермы нет. У двусторонне-симметричных животных, к которым относимся и мы, есть все три зародышевых листка. Животных с двумя зародышевыми листками называют двуслойными (диплобластами), животных с тремя зародышевыми листками - трехслойными (триплобластами).

Автор известного курса общей эмбриологии Б. П. Токин назвал теорию зародышевых листков «самым крупным морфологическим обобщением за всю историю эмбриологии». К рубежу XIX–XX веков эта теория стала общепринятой. Более того, сложилось своеобразное представление о «святости» зародышевых листков, границы которых считались непоколебимыми. Если некоторый орган образуется из одного зародышевого листка, он никогда, ни у какого организма не может образоваться из другого.

Но, как часто бывает, живая природа оказалась объемнее академических схем. В данном случае это выяснилось быстро. В 1893 году американская исследовательница-эмбриолог Джулия Платт (Julia Platt) обнаружила, что некоторые хрящи жаберного аппарата позвоночных развиваются не из мезодермы (как следовало бы ожидать по классической теории зародышевых листков), а из эктодермы. Джулия Платт сделала целую серию работ по прослеживанию судьбы эктодермальных клеток, образующих хрящи. Ее результаты были подтверждены несколькими другими эмбриологами. Но широкого признания это открытие не нашло, в основном из-за чисто догматических сомнений: хрящам «положено» развиваться из мезодермы - значит, развиваться из эктодермы они не могут, и всё тут! Джулия Платт даже не получила постоянной ставки в университете, после чего решила вообще оставить науку. Она занялась общественной деятельностью, стала заметным в штате Калифорния политиком, много сделала для охраны природы, так что человечество в целом тут, может, и не пострадало. Но вот особое происхождение жаберных хрящей стало общепринятым фактом только в конце 1940-х годов, после очень тонких опытов шведского эмбриолога Свена Хёрстадиуса (Sven Hörstadius), усомниться в результатах которых было уже трудно.

Казалось бы, какое значение для нашего мировоззрения может иметь вопрос о том, из каких именно зародышевых клеток формируются жаберные дуги тритона или акулы? Не мелочь ли это? Нет, не мелочь. Потянув, как за ниточку, за данные Платт и Хёрстадиуса, мы оказываемся перед серьезной макроэволюционной проблемой.

Мы уже знаем, что эктодерма - самый внешний из трех зародышевых листков. У позвоночных она делится на две части: (1) покровная эктодерма и (2) нейроэктодерма. Из покровной эктодермы образуется эпидермис, из нейроэктодермы - центральная нервная система. Покровная эктодерма, естественно, одевает тело будущего животного снаружи. Что касается нейроэктодермы, то она сначала представляет собой расположенную на будущей спине нервную пластинку , которая потом погружается, сворачивается и замыкается в нервную трубку . Эта трубка и становится центральной нервной системой, то есть мозгом (спинным и головным).

На самой границе нейроэктодермы и покровной эктодермы у позвоночных находится группа клеток, называемая нервным валиком , или нервным гребнем . Клетки нервного гребня не входят ни в состав нервной трубки, ни в состав эпидермиса. Зато они способны расползаться по всему организму, мигрируя, как амебы, с помощью ложноножек. Именно судьбу клеток нервного гребня и изучала Джулия Платт. Действительно, из них формируются многочисленные структуры, далеко не только нервные. Свен Хёрстадиус в свое время показал, что если у зародыша хвостатой амфибии микрохирургически удалить нервный гребень в передней трети тела, то у него нормально развивается затылок, нормально развиваются ушные капсулы - а всего остального черепа просто нет. Ни большая часть мозговой коробки, ни капсулы органов обоняния, ни челюсти не развиваются без вклада клеток нервного гребня (рис. 2).

Вот список (наверняка неполный) производных нервного гребня у позвоночных:

  • Нервные узлы спинных корешков спинномозговых нервов (часто их называют просто спинальными ганглиями).
  • Нервные узлы вегетативной нервной системы (симпатической, парасимпатической и метасимпатической).
  • Мозговое вещество надпочечников .
  • Шванновские клетки , образующие оболочку отростков нейронов.
  • Внутренняя выстилка (эндотелий) и гладкомышечный слой некоторых сосудов, в том числе аорты.
  • Ресничные мышцы, сужающие и расширяющие зрачок.
  • Одонтобласты - клетки, выделяющие дентин, твердое вещество зубов.
  • Пигментные клетки покровов: эритрофоры (красные), ксантофоры (желтые), иридофоры (отражающие), меланофоры и меланоциты (черные).
  • Часть адипоцитов - клеток жировой ткани.
  • Парафолликулярные клетки щитовидной железы, выделяющие гормон кальцитонин .
  • Хрящи и кости черепа, в первую очередь его висцерального (глоточного) отдела, в который входят не только жаберные дуги, но и челюсти.

Богатый перечень, не правда ли? Ну, спинномозговые ганглии - это неудивительно: они расположены как раз примерно на месте нервного гребня, клеткам которого в данном случае даже не приходится совершать миграцию. Вегетативные ганглии - тоже ничего удивительного. Они расположены гораздо дальше от спинного мозга, но, в конце концов, это часть нервной системы. И мозговое вещество надпочечников - это фактически вегетативный ганглий, только преобразованный. И шванновские клетки - часть нервной ткани. Но дальше-то в списке идут структуры, не имеющие к нервной системе никакого отношения, притом разнообразные и многочисленные. У человека есть и болезни, вызываемые аномалиями производных нервного гребня, - нейрокристопатии .

Исключительно важен последний пункт списка: череп! Из нервного гребня образуется, собственно, большая его часть (кроме слухового отдела и затылка). Между тем весь остальной скелет - позвоночник, скелет конечностей - образуется из мезодермы. Классическая концепция, согласно которой однотипные органы не должны развиваться из разных зародышевых листков, тут явно дала сбой.

Еще один важный момент: весь список производных нервного гребня относится не к хордовым , а именно к позвоночным . Кроме позвоночных в тип хордовых входят еще две современные группы животных: оболочники и ланцетники . Так вот у них нервный гребень не выражен. Это уникальный признак подтипа позвоночных.

Что же такое нервный гребень? Если это часть эктодермы (как считалось во времена Джулии Платт), то какая-то уж слишком необычная. В 2000 году канадский эмбриолог Брайан Холл (Brian Keith Hall) предложил считать нервный гребень не чем иным, как отдельным - четвертым - зародышевым листком. Эта трактовка быстро распространилась в научной литературе, где нервный гребень сейчас вообще является популярной темой. Получается, что позвоночные - единственные четырехслойные животные (квадробласты).

Четвертый зародышевый листок - такая же важная особенность позвоночных, как, например, случившаяся в начале их эволюции полногеномная дупликация (см., например: Своим сердцем позвоночные обязаны полногеномной дупликации , «Элементы», 17.06.2013). Но как он возник? Американские биологи Уильям Муньос (William A. Muñoz) и Пол Трэйнор (Paul A. Trainor) опубликовали статью о современном состоянии этой проблемы (рис. 1). Пол Трэйнор - видный эмбриолог позвоночных, уже много лет специализирующийся как раз на нервном гребне, так что обзор, подписанный им, точно заслуживает внимания.

По современным данным, от эволюционного древа хордовых первой отошла веточка, ведущая к ланцетнику (см., например: Причина особенностей генома оболочников - детерминированность их эмбрионального развития , «Элементы», 01.06.2014). Оболочники и позвоночные - более близкие родственники; вместе они образуют группу, которая называется Olfactores («животные с органом обоняния»). Раз ланцетник представляет более древнюю ветвь, то у него можно ожидать более древних признаков. Действительно, никаких близких аналогов клеток нервного гребня у ланцетника не найдено. Большинства органов и тканей, которые у позвоночных образуются из материала нервного гребня, в его теле просто нет. Существует одно серьезное исключение: волокна чувствительных спинномозговых нервов ланцетника окружены вспомогательными (глиальными) клетками, очень похожими на шванновские клетки позвоночных. Шванновские клетки - важнейшие производные нервного гребня. Но их аналоги у ланцетника образуются из обычной нейроэктодермы, то есть из материала нервной трубки. Этот пример только подтверждает: никакого нервного гребня у ланцетника нет.

С оболочниками дело обстоит сложнее и интереснее. У асцидии Ciona intestinalis (вполне типичный и хорошо изученный оболочник) аналоги производных нервного гребня есть - это пигментные клетки, содержащие меланин. И их эмбриональный источник расположен как раз «где надо»: на границе нервной пластинки и покровной эктодермы. Особенности индивидуального развития асцидии позволяют проследить судьбу этих клеток очень точно. Прежде чем занять свое место в покровах, они совершают долгую миграцию (иногда сквозь рыхлую мезодерму, а иногда между мезодермой и эпидермисом); все это очень похоже на поведение клеток типичного нервного гребня. Более того, в предшественниках пигментных клеток асцидии экспрессируется антиген HNK-1, специфичный для клеток нервного гребня позвоночных, вплоть до птиц и млекопитающих.

«Нервный гребень» асцидии происходит от определенного бластомера (то есть от определенной клетки раннего зародыша; для асцидии составлена карта раннего развития, где все бластомеры пронумерованы). Интересно, что пигментными клетками становятся не все потомки этого бластомера. Некоторые из них входят в состав мезодермы и могут, например, становиться клетками крови или мышцами стенки тела. Связь нервного гребня и мезодермы изучена пока недостаточно подробно, но она наверняка не случайна. Похоже, здесь мы прикоснулись к довольно тонкому и глубокому эволюционному механизму. У большинства животных пигментные клетки развиваются именно из мезодермы. Скорее всего, так было и у предков асцидии. Затем, в процессе эволюции хордовых, возникающий нервный гребень «перехватил» у мезодермы путь дифференцировки пигментных клеток, начав формировать их из себя. У позвоночных этот процесс продолжился: нервный гребень «перехватил» пути дифференцировки еще и таких традиционно мезодермальных тканей, как хрящ, кость, жировая ткань и гладкие мышцы, причем во всех этих случаях - только частично.

Именно так мог бы проявляться меторизис - процесс изменения границы зародышевых листков, когда один из них частично замещает другой. Это понятие ввел в 1908 году профессор Петербургского (впоследствии Петроградского) университета, академик Владимир Михайлович Шимкевич . Но Шимкевич не знал, что путем меторизиса может образоваться целый новый зародышевый листок. У позвоночных, получается, произошло именно это. Вот чем уникален их план строения.

Скелетная ткань, которая у всех известных нам животных развивается исключительно из нервного гребня - это дентин. К счастью, дентин очень тверд, и он отлично сохраняется в ископаемом состоянии. Например, мы знаем, что представители одной из самых древних групп бесчелюстных позвоночных - Pteraspidomorphi - были буквально закованы в броню из дентина (рис. 3). Видимо, это можно рассматривать как документальное свидетельство того, что нервный гребень у них уже был полностью развит. Но скорее всего, он возник еще раньше.

Остается еще один интригующий вопрос. Связаны ли между собой два уникальных признака позвоночных: четвертый зародышевый листок и полногеномная дупликация?

Да, такая связь скорее всего есть. Это можно показать на некоторых примерах, несмотря на то, что система генов, управляющих развитием нервного гребня, изучена пока не очень полно. Считается общепризнанным, что в начале эволюции позвоночных произошло подряд два события полногеномной дупликации (whole-genome duplication event, WGD). Дупликация, то есть удвоение всего генома, не может не привести к появлению дополнительных копий генов, в том числе и контролирующих индивидуальное развитие. Пример такого гена - ген FoxD , относящийся к крупному генному семейству Fox . У ланцетника этот ген один. Область его экспрессии включает некоторые участки нервной трубки, а также осевую мезодерму. У асцидии ген FoxD тоже один, поскольку никакой полногеномной дупликации у оболочников не было. Но у асцидии, в отличие от ланцетника, есть зачаток нервного гребня. Ген FoxD экспрессируется и в нем тоже. А у позвоночных генов FoxD становится несколько, и в клетках нервного гребня экспрессируется только один из них - ген FoxD3 . Это - разделение функций, типичное для последствий дупликации. Есть идея, что любая дупликация сама по себе «побуждает» новые копии гена по возможности разделять между собой задачи, чтобы в генной сети не возникало сбоев из-за дублирования (см. Конфликт между копиями удвоившегося гена ведет к избыточному усложнению генно-регуляторных сетей , «Элементы», 10.10.2013).

С другой стороны, можно сказать, что дупликация дала геному позвоночных дополнительные степени свободы, которые пригодились, в частности, при создании нового зародышевого листка. Ведь у асцидии такого разнообразия производных нервного гребня нет и отдаленно; у них это рядовой мелкий зачаток, обеспечивающий формирование единственного типа клеток. У позвоночных этот зачаток «взбесился», захватив огромное количество разных путей дифференцировки вместе с типами клеток, к которым эти пути ведут. А увеличение числа генов явно послужило тут предпосылкой.

В свете этих данных старое наивное представление, что позвоночные устроены сложнее всех других животных, начинает, как ни странно, выглядеть верным. Полногеномная дупликация и новый зародышевый листок - весомые объективные показатели сложности. Еще одним подобным показателем может быть, например, количество регуляторных микроРНК (см. Усложнение организма у древних животных было связано с появлением новых регуляторных молекул , «Элементы», 04.10.2010). Но пример с нервным гребнем даже ярче.

Задача урока : сформировать у учащихся знания о зародышевом развитии человека как специализированной функции органов половой системы, о сходных признаках у зародышей человека и животных, доказывающих историческое развитие человека.

Оборудование . Демонстрационный материал: фрагменты из учебного фильма «Клеточное строение животных»; таблицы: «Стадии дроблении оплодотворенного яйца у ланцетника», «Положение плода в матке», «Органы и ткани» образующиеся из зародышевых листков».

План урока

Проведение урока
Изучение учащимися материала о зародышевом развитии человека начинается с повторения многократного деления оплодотворенной яйцеклетки, с вступительного рассказа учителя о том, что в индивидуальном развитии человека различают развитие зародышевое и послезародышевое; зародышевое развитие начинается с многократного деления оплодотворенной яйцеклетки. Это приводит к образованию зародыша, который претерпевает сдобные изменения в матке материнского организма; развитие зародыша заканчивается рождением ребенка.

В последующем рассказе учитель сообщает, что ранние стадии дробления оплодотворенной яйцеклетки у человека протекают сходно с ланцетником. В результате неоднократного деления оплодотворенной яйцеклетки возникает много клеток, из них образуются зародышевые листки: наружный (эктодерма), внутренний (энтодерма), средний (мезодерма). Часть образовавшихся клеток при делении дает начало оболочкам зародыша. Из зародышевых листков образуются органы зародыша и зародыш в целом. При этом учитель показывает учащимся самодельную таблицу с перечнем органов и тканей, образующихся из зародышевых листков.

На следующем этапе в рассказ включаются вопросы о питании человеческого зародыша в матке материнского организма и рождении ребенка. При освещении этих вопросов учителю можно использовать таблицу учебника, показывающую положение плода в матке матери.

Органы и ткани, образующиеся из зародышевых листков
Эктодерма Энтодерма Мезодерма
эпидермис кожи; ногти; волосы;
потовые железы; нервная система; хрусталик глаза;
эпителий рта, носовой полости и анального отверстия; зубная эмаль
эпителий пищевода, желудка, кишок, трахеи, бронхов, легких; печень; поджелудочная
железа;
эпителий желчного пузыря;
щитовидная, паращитовидные и зобная железы;
эпителий мочевого пузыря и мочеиспускательного канала
гладкая мускулатура; скелетные и сердечные мышцы; дерма;
соединительная ткань,
кости, хрящи;
дентин зубов;
кровь и кровеносные сосуды;
брыжейка;
почки;
семенники и яичники

Выявляя степень осмысления учащимися материала, воспринятого из рассказа, учитель заслушивает ответы на вопросы: в каких органах половой системы человека происходит зародышевое развитие? Как происходит зародышевое развитие? Что понимается под зародышевым развитием человека?

Учитель, используя ответы учащихся на поставленные вопросы, помогает им формулировать вывод: зародышевое развитие человека - это многократное деление оплодотворенной яйцеклетки, происходящее в яйцеводах и матке, образование из клеток зародышевых листков и оболочек зародыша, формирование из зародышевых листков органов и тканей зародыша.

Сходство зародышей человека и животных можно изучать в процессе самостоятельной работы учащихся со статьей учебник, иллюстрациями учебника и настенной таблицей.

Задание к самостоятельной работе может включать: чтение статей учебника, стр. 288-289; рассматривание иллюстраций 205, 206, настенной таблицы «Развитие зародышей позвоночных животных»; устные ответы учащихся на вопросы: укажите основные черты сходства у зародышей человека и позвоночных животных на определенных стадиях развития. О чем говорят черты сходства между зародышами человека и животных? Что понимается над историческим развитием человека?

Опираясь на выявленные ответы учащихся, учитель помогает учащимся сформулировать вывод: сравнение зародышей человека и животных показывает сходство между ними. Сходные признаки у зародыша человека и животных рассказывают в очень краткой форме историю развития человека от его древнейших предков которое длилось многие сотни миллионов лет.

Задание на дом : статья учебника «Развитие зародыша человека».-Четырем ученикам подготовить доклады по послезародышевому развитию человека (грудной, ясельный, дошкольный и школьный периоды). Литература: Популярная медицинская энциклопедия, 1967.