Островский А.Н

Все формулы по химии за 8. Составление и решение химических уравнений

Величина и ее размерность

Соотношение

Атомная масса элемента Х (относительная)

Порядковый номер элемента

Z = N (е –) = N (р +)

Массовая доля элемента Э в веществе Х, в долях единицы, в %)


Количество вещества Х, моль

Количество вещества газа, моль

V m = 22,4 л/моль (н.у.)

н.у. – р = 101 325 Па, Т = 273 К

Молярная масса вещества Х, г/моль, кг/моль

Масса вещества X, г, кг

m (X) = n (X)M (X)

Молярный объем газа, л/моль, м 3 /моль

V m = 22,4 л/моль при н.у.

Объем газа, м 3

V = V m ×n

Выход продукта



Плотность вещества Х, г/л, г/мл, кг/м 3

Плотность газообразного вещества Х по водороду

Плотность газообразного вещества Х по воздуху

М (воздуха) = 29 г/моль

Объединенный газовый закон

Уравнение Менделеева-Клапейрона

PV = nRT , R = 8,314 Дж/моль×К

Объемная доля газообразного вещества в смеси газов, в долях единицы или в %

Молярная масса смеси газов

Молярная доля вещества (Х) в смеси

Количество теплоты, Дж, кДж

Q = n (X)Q (X)

Тепловой эффект реакции

Q =– H

Теплота образования вещества Х, Дж/моль, кДж/моль

Скорость химической реакции (моль/лсек)

Закон действия масс

(для простой реакции)

a A + в B = с С + d D

u = k с a (A)с в (B)

Правило Вант-Гоффа

Растворимость вещества (Х) (г/100 г растворителя)

Массовая доля вещества Х в смеси А + Х, в долях единицы, в %

Масса раствора, г, кг

m (р-р) = m (X) + m (H 2 O)

m (р-р) = V (р-р)(р-р)

Массовая доля растворенного вещества в растворе, в долях единицы, в %

Плотность раствора

Объем раствора, см 3 , л, м 3

Молярная концентрация, моль/л

Степень диссоциации электролита (Х), в долях единицы или %

Ионное произведение воды

K (H 2 O) =

Водородный показатель

рН = –lg

Основная:

Кузнецова Н.Е. и др . Химия. 8 кл-10 кл.. – М.: Вентана-Граф, 2005-2007.

Кузнецова Н.Е., Литвинова Т.Н., Левкин А.Н. Химия.11 класс в 2-х частях, 2005-2007 гг.

Егоров А.С. Химия. Новое учебное пособие для подготовки в вузы. Ростов н/Д: Феникс, 2004.– 640 с.

Егоров а.С. Химия: современный курс для подготовки к егэ. Ростов н/д: Феникс, 2011. (2012)– 699 с.

Егоров А.С. Самоучитель по решению химических задач. – Ростов-на-Дону: Феникс, 2000.– 352 с.

Химия/пособие-репетитор для поступающих в вузы. Ростов-н/Д, Феникс, 2005– 536 с.

Хомченко Г.П.,Хомченко И.Г . Задачи по химии для поступающих в вузы. М.: Высшая школа. 2007.–302с.

Дополнительная:

Врублевский А.И . Учебно-тренировочные материалы для подготовки к централизованному тестированию по химии/ А.И. Врублевский –Мн.: ООО «Юнипресс», 2004.– 368 с.

Врублевский А.И . 1000 задач по химии с цепочками превращений и контрольными тестами для школьников и абитуриентов.– Мн.: ООО «Юнипресс», 2003.– 400 с.

Егоров А.С . Все типы расчетных задач по химии для подготовки к ЕГЭ.–Ростов н/Д: Феникс, 2003.–320с.

Егоров А.С., Аминова Г.Х . Типовые задания и упражнения для подготовки к экзамену по химии. – Ростов н/Д: Феникс, 2005.– 448 с.

Единый государственный экзамен 2007. Химия. Учебно-тренировочные материалы для подготовки учащихся/ФИПИ – М.: Интеллект-Центр, 2007.– 272 с.

ЕГЭ-2011. Химия. Учебно-тренировочный комплект под ред. А.А. Кавериной.– М.: Национальное образование, 2011.

Единственные реальные варианты заданий для подготовки к единому государственному экзамену. ЕГЭ.2007. Химия/В.Ю. Мишина, Е.Н. Стрельникова. М.: Федеральный центр тестирования, 2007.–151с.

Каверина А.А . Оптимальный банк заданий для подготовки учащихся. Единый государственный экзамен 2012.Химия. Учебное пособие./ А.А. Каверина, Д.Ю. Добротин, Ю.Н. Медведев, М.Г. Снастина.– М.: Интеллект-Центр, 2012.– 256 с.

Литвинова Т.Н., Выскубова Н.К., Ажипа Л.Т., Соловьева М.В . Тестовые задания в дополнение к контрольным работам для слушателей 10-месячных заочных подготовительных курсов (методические указания). Краснодар, 2004. – С. 18 – 70.

Литвинова Т.Н . Химия. ЕГЭ-2011. Тренировочные тесты. Ростов н/Д: Феникс, 2011.– 349 с.

Литвинова Т.Н . Химия. Тесты к ЕГЭ. Ростов н/Д.: Феникс, 2012. - 284 с.

Литвинова Т.Н . Химия. Законы, свойства элементов и их соединений. Ростов н/Д.: Феникс, 2012. - 156 с.

Литвинова Т.Н., Мельникова Е.Д., Соловьева М.В ., Ажипа Л.Т., Выскубова Н.К. Химия в задачах для поступающих в вузы.– М.: ООО «Изд-во Оникс»: ООО «Изд-во «Мир и образование», 2009.– 832 с.

Учебно-методический комплекс по химии для учащихся медико-биологических классов под ред. Т.Н.Литвиновой.– Краснодар.: КГМУ, – 2008.

Химия. ЕГЭ–2008. Вступительные испытания, учебно-методическое пособие / под ред. В.Н. Доронькина. – Ростов н/Д: Легион, 2008.– 271 с

Список сайтов по химии:

1. Alhimik. http :// www . alhimik . ru

2. Химия для всех. Электронный справочник за полный курс химии.

http :// www . informika . ru / text / database / chemy / START . html

3. Школьная химия – справочник. http :// www . schoolchemistry . by . ru

4. Репетитор по химии. http://www. chemistry.nm.ru

Интернет-ресурсы

    Alhimik. http :// www . alhimik . ru

    Химия для всех. Электронный справочник за полный курс химии.

http :// www . informika . ru / text / database / chemy / START . html

    Школьная химия – справочник. http :// www . schoolchemistry . by . ru

    http://www.classchem.narod.ru

    Репетитор по химии. http://www. chemistry.nm.ru

    http://www.alleng.ru/edu/chem.htm - образовательные ресурсы Интернета по химии

    http://schoolchemistry.by.ru/ - школьная химия. На этом сайте есть возможность пройти On-line тестирование по разным темам, а также демонстрационные варианты Единого Государственного Экзамена

    Химия и жизнь–ХХ1 век: научно-популярный журнал. http :// www . hij . ru


Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы и неметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Используются следующие числовые приставки :

1 - моно

7 - гепта

2 - ди

3 - три

9 - нона

4 - тетра

5 - пента

6 - гекса

Неопределенное число указывается числовой приставкой n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2- - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl
3 - трихлорид фосфора
LaCl
3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

NH 4 + - аммоний

HF 2 - - гидродифторид

Для небольшого числа хорошо известных веществ также используют специальные названия:

AsH 3 - арсин

HN 3 - азидоводород

B 2 H 6 - боран

H 2 S - сероводород

1. Кислотные и основные гидроксиды. Соли

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х- называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3- - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3- - арсенат

-

В 4 О 7 2- - тетраборат

-

ВiО 3 - - висмутат

H 2 CrO 4 - хромовая

CrO 4 2- - хромат

-

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2- - дихромат

-

FeO 4 2- - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5- - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3- - ортофосфат


НPO 4 2- - гидроортофосфат


Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4- - дифосфат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n +- катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4 ) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

CuCO 3

Карбонат меди(II)

Ti(NO 3 ) 2 O

Оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4 ) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

2. Кислотные и оснόвные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3 ) отвечают кислотные оксиды (SO 3 , CO 2 ), а основным гидроксидам (NaOH, Ca(OH) 2 ) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

SO 3 - триоксид серы

Na 2 O - оксид натрия

P 4 O 10 - декаоксид тетрафосфора

ThO 2 - оксид тория(IV)

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4 ) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4 ) 3

3. Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4 ) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4 ) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+ ), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 - ).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4 ) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

4. Бинарные соединения

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2 ), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2 ) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2

Pb(N 3 ) 2 - азид свинца(II)

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III )O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III )O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3 ) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

Урок посвящен изучению правил составления и чтения химических формул веществ. Вы узнаете, какую информацию дает химическая формула вещества и как на основании данных о массовых долях химических элементов составить химическую формулу.

Тема: Первоначальные химические представления

Урок: Химическая формула вещества

Для обозначения веществ пользуются химическими формулами.

Химическая формула - это условная запись состава вещества посредством химических знаков и индексов .

С помощью индексов Й.Я. Берцелиус предложил обозначать число атомов химического элемента в молекуле вещества. Например: в состав молекулы воды входят два атома водорода и один атом кислорода - Н 2 О (2 - индекс). В состав углекислого газа входит один атом углерода и два атома кислорода - СО 2 . Индекс, равный единице, не пишется.

Цифра, стоящая перед формулой вещества, называется коэффициентом и указывает на количество молекул данного вещества. Например, 4Н 2 О - 4 молекулы воды. В четырех молекулах воды содержится 8 атомов водорода и 4 атома кислорода.

На примере углекислого газа СО 2 рассмотрим, какую информацию о веществе можно получить по его химической формуле.

Таблица 1.

На основании химической формулы можно рассчитать массовые доли химических элементов в веществе, это будет рассмотрено в материале следующего урока.

Химические формулы выводят на основании данных, полученных экспериментально. Если известны элементов в веществе и относительная вещества, можно найти число атомов каждого элемента в молекуле.

Пример. Известно, что относительная молекулярная масса углекислого газа равна 44. Массовая доля кислорода в этом веществе составляет 0,727 (72,7%), остальное приходится на углерод. Составим химическую формулу углекислого газа. Для этого необходимо:

1. определить массу, приходящуюся на долю атомов кислорода в молекуле:

44*0,727=32 (относительных единиц);

2. определить число атомов кислорода, зная, что относительная атомная масса кислорода равна 16:

3. определить массу, приходящуюся на долю атомов углерода:

44-32=12 (относительных единиц);

4. определить число атомов углерода, зная, что относительная атомная масса углерода равна 12:

5. составить формулу углекислого газа: СО 2 .

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006. (с.26-28)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.32-34)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§14)

4. Химия: неорг. химия: учеб. для 8 кл. общеобр. учреждений / Г.Е. Рудзитис, ФюГю Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§10)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.77 № 3 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 32-34 №№ 3,4,6,7 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

нескольких основных понятий и формул.

У всех веществ разная масса, плотность и объем. Кусочек металла одного элемента может весить во много раз больше, чем точно такого же размера кусочек другого металла.


Моль
(количество моль)

обозначение: моль , международное: mol — единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NA частиц (молекул, атомов, ионов)Поэтому была введена универсальная величина — количество моль. Часто встречающаяся фраза в задачах — «было получено... моль вещества»

NA = 6,02 · 1023

NA — число Авогадро. Тоже «число по договоренности». Сколько атомов содержится в стержне кончика карандаша? Порядка тысячи. Оперировать такими величинами не удобно. Поэтому химики и физики всего мира договорились — обозначим 6,02 · 1023частиц (атомов, молекул, ионов) как 1 моль вещества .

1 моль = 6,02 · 1023 частиц

Это была первая из основных формул для решения задач.

Молярная масса вещества

Молярная масса вещества — это масса одного моль вещества .

Обозначается как Mr. Находится по таблице Менделеева — это просто сумма атомных масс вещества.

Например, нам дана серная кислота — H2SO4. Давайте посчитаем молярную массу вещества: атомная масса H =1, S-32, O-16.
Mr(H2SO4)=1 2+32+16 4=98 г\моль.

Вторая необходимая формула для решения задач —

формула массы вещества :

Т.е., чтобы найти массу вещества, необходимо знать количество моль (n), а молярную массу мы находим из Периодической системы.

Закон сохранения массы — масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.

Если мы знаем массу (массы) веществ, вступивших в реакцию, мы можем найти массу (массы) продуктов этой реакции. И наоборот.

Третья формула для решения задач по химии —

объем вещества :

К сожалению, это изображение не соответствует нашим правилам. Чтобы продолжить публикацию, пожалуйста, удалите изображение или загрузите другое.

Откуда взялось число 22.4? Из закона Авогадро :

в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул.

Согласно закону Авогадро, 1 моль идеального газа при нормальных условиях (н.у.) имеет один и тот же объём Vm = 22,413 996(39) л

Т.е., если в задаче нам даны нормальные условия, то, зная количество моль (n), мы можем найти объем вещества.

Итак, основные формулы для решения задач по химии

Число Авогадро NA

6,02 · 1023 частиц

Количество вещества n (моль)

n=V\22.4 (л\моль)

Масса вещества m (г)

Объем вещества V (л)

V=n 22.4 (л\моль)

К сожалению, это изображение не соответствует нашим правилам. Чтобы продолжить публикацию, пожалуйста, удалите изображение или загрузите другое.

Это формулы. Часто для решения задач нужно сначала написать уравнение реакции и (обязательно!) расставить коэффициенты — их соотношение определяет соотношение молей в процессе.

Современные символы химических элементов были введены в науку в 1813 году Я. Берцелиусом. По его предложению элементы обозначаются начальными буквами их латинских названий. Например, кислород (Oxygenium) обозначается буквой О, сера (Sulfur) - буквой S, водород (Hydrogenium) - буквой Н. В тех случаях, когда названия элементов начинаются с одной и той же буквы, к первой букве добавляется еще одна из последующих. Так, углерод (Carboneum) имеет символ С, кальций (Calcium) - Ca, медь (Cuprum) - Cu.

Химические символы - не только сокращенные названия элементов: они выражают и определенные их количества (или массы), т.е. каждый символ обозначает или один атом элемента, или один моль его атомов, или массу элемента, равную (или пропорциональную) молярной массе этого элемента. Например, С означает или один атом углерода, или один моль атомов углерода, или 12 единиц массы (обычно 12 г) углерода.

Формулы химических веществ

Формулы веществ также указывают не только состав вещества, но и его количество и массу. Каждая формула изображает или одну молекулу вещества, или один моль вещества, или массу вещества, равную (или пропорциональную) его молярной массе. Например, H 2 O обозначает или одну молекулу воды, или один моль воды, или 18 единиц массы (обычно (18 г) воды.

Простые вещества также обозначаются формулами, показывающими, из скольких атомов состоит молекула простого вещества: например, формула водорода H 2 . Если атомный состав молекулы простого вещества точно не известен или вещество состоит из молекул, содержащих различное число атомов, а также, если оно имеет не молекулярное, а атомное или металлическое строение, простое вещество обозначают символом элемента. Например, простое вещество фосфор обозначают формулой P, поскольку в зависимости от условий фосфор может состоять из молекул с различным числом атомов или иметь полимерное строение.

Формулы по химии для решения задач

Формулу вещества устанавливают на основании результатов анализа. Например, согласно данным анализа глюкоза содержит 40% (масс.) углерода, 6,72% (масс.) водорода и 53,28% (масс.) кислорода. Следовательно, массы углерода, водорода и кислорода относятся друг к другу как 40:6,72:53,28. Обозначим искомую формулу глюкозы C x H y O z , где x, y и z - числа атомов углерода, водорода и кислорода в молекуле. Массы атомов этих элементов соответственно равны 12,01; 1,01 и 16,00 а.е.м. Поэтому в составе молекулы глюкозы находится 12,01х а.е.м. углерода, 1,01у а.е.м. водорода и 16,00zа.е.м. кислорода. Отношение этих масс равно 12,01х: 1,01у: 16,00z. Но это отношение мы уже нашли, исходя из данных анализа глюкозы. Следовательно:

12,01х: 1,01у: 16,00z = 40:6,72:53,28.

Согласно свойствам пропорции:

х: у: z = 40/12,01:6,72/1,01:53,28/16,00

или х: у: z = 3,33: 6,65: 3,33 = 1: 2: 1.

Следовательно, в молекуле глюкозы на один атом углерода приходится два атома водорода и один атом кислорода. Этому условию удовлетворяют формулы CH 2 O, C 2 H 4 O 2 , C 3 H 6 O 3 и т.д. Первая из этих формул — CH 2 O- называется простейшей или эмпирической формулой; ей отвечает молекулярная масса 30,02. Для того, чтобы узнать истинную или молекулярную формулу, необходимо знать молекулярную массу данного вещества. Глюкоза при нагревании разрушается, не переходя в газ. Но ее молекулярную массу можно определить и другими методами: она равна 180. Из сопоставления этой молекулярной массы с молекулярной массой, отвечающей простейшей формуле, ясно, что глюкозе отвечает формула C 6 H 12 O 6 .

Таким образом, химическая формула - это изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Различают следующие типы формул:

простейшая , которую получают опытным путем определяя соотношение химических элементов в молекуле и используя значения их относительных атомных масс (см. пример выше);

молекулярная , которую можно получить, зная простейшую формулу вещества и его молекулярную массу (см. пример выше);

рациональная , отображающая группы атомов, характерные для классов химических элементов (R-OH - спирты, R - COOH - карбоновые кислоты, R - NH 2 - первичные амины и т.д.);

структурная (графическая) , показывающая взаимное расположение атомов в молекуле (бывает двумерная (в плоскости) или трехмерная (в пространстве));

электронная , отображающая распределение электронов по орбиталям (записывается только для химических элементов, а не для молекул).

Рассмотрим более подробно на примере молекулы этилового спирта:

  1. простейшая формула этанола - C 2 H 6 O;
  2. молекулярная формула этанола - C 2 H 6 O;
  3. рациональная формула этанола - С 2 Н 5 ОН;

Примеры решения задач

ПРИМЕР 1

Задание При полном сгорании кислородсодержащего органического вещества массой 13,8 г получили 26,4 г углекислого газа и 16,2 г воды. Найдите молекулярную формулу вещества, если относительная плотность его паров по водороду равна 23.
Решение Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у» и «z» соответственно:

C x H y O z + O z →CO 2 + H 2 O.

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(C) = ×12 = 7,2 г;

m(H) = 2×16,2 / 18 ×1= 1,8 г.

m(O) = m(C x H y O z) - m(C) - m(H) = 13,8 - 7,2 - 1,8 = 4,8 г.

Определим химическую формулу соединения:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z = 7,2/12:1,8/1:4,8/16;

x:y:z = 0,6: 1,8: 0,3 = 2: 6: 1.

Значит простейшая формула соединения C 2 H 6 O и молярную массу 46 г/моль .

Значение молярной массы органического вещества можно определить при помощи его плотности по водороду:

M substance = M(H 2) × D(H 2) ;

M substance = 2 × 23 = 46 г/моль.

M substance / M(C 2 H 6 O) = 46 / 46 = 1.

Значит формула органического соединения будет иметь вид C 2 H 6 O.

Ответ C 2 H 6 O

ПРИМЕР 2

Задание Массовая доля фосфора в одном из его оксидов равна 56,4%. Плотность паров оксида по воздуху равна 7,59. Установите молекулярную формулу оксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Вычислим массовую долю кислорода в соединении:

ω (O) = 100% — ω(P) = 100% — 56,4% = 43,6%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (фосфор), «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y = ω(P)/Ar(P) : ω(O)/Ar(O);

x:y = 56,4/31: 43,6/16;

x:y = 1,82: 2,725 = 1: 1,5 = 2: 3.

Значит простейшая формула соединения фосфора с кислородом будет иметь вид P 2 O 3 и молярную массу 94 г/моль .

Значение молярной массы органического вещества можно определить при помощи его плотности по воздуху:

M substance = M air × D air;

M substance = 29 × 7,59 = 220 г/моль.

Чтобы найти истинную формулу органического соединения найдем отношение полученных молярных масс:

M substance / M(P 2 O 3) = 220 / 94 = 2.

Значит индексы атомов фосфора и кислорода должны быть в 2 раза выше, т.е. формула вещества будет иметь вид P 4 O 6 .

Ответ P 4 O 6