Тургенев И.С

Случайной величины. Критерий Колмогорова

Для применения критерия А.Н. Колмогорова ЭД требуется представить в виде вариационного ряда (ЭД недопустимо объединять в разряды). В качестве меры расхождения между теоретической F(x ) и эмпирической F* n (x) функциями распределения непрерывной случайной величины Х используется модуль максимальной разности

А.Н. Колмогоров доказал, что какова бы ни была функция распределения F(x) величины Х при неограниченном увеличении количества наблюдений n функция распределения случайной величины d n асимптотически приближается к функции распределения

Иначе говоря, критерий А.Н. Колмогорова характеризует вероятность того, что величина d n не будет превосходить параметр l для любой теоретической функции распределения. Уровень значимости a выбирается из условия

в силу предположения, что почти невозможно получить это равенство, когда существует соответствие между функциями F(x) и F* n (x) . Критерий А.Н. Колмогорова позволяет проверить согласованность распределений по малым выборкам, он проще критерия хи-квадрат, поэтому его часто применяют на практике. Но требуется учитывать два обстоятельства.

1. В соответствии с условиями его применения необходимо пользоваться следующим соотношением

2. Условия применения критерия предусматривают, что теоретическая функция распределения известна полностью – известны вид функции и значения ее параметров. На практике параметры обычно неизвестны и оцениваются по ЭД. Но критерий не учитывает уменьшение числа степеней свободы при оценке параметров распределения по исходной выборке. Это приводит к завышению значения вероятности соблюдения нулевой гипотезы, т.е. повышается риск принять в качестве правдоподобной гипотезу, которая плохо согласуется с ЭД (повышается вероятность совершить ошибку второго рода). В качестве меры противодействия такому выводу следует увеличить уровень значимости a, приняв его равным 0,1 – 0,2, что приведет к уменьшению зоны допустимых отклонений.

Последовательность действий при проверке гипотезы следующая.

1. Построить вариационный ряд.

2. Построить график эмпирической функции распределения F *(x ).

3. Выдвинуть гипотезу:

H 0: F (x ) = F 0(x ) ,

H 1: F (x ) F 0(x ) ,

где F 0(x ) - теоретическая функция распределения типового закона: равномерного, экспоненциального или нормального. Ниже приведены формулы для расчета F 0(x).

Равномерный закон

Экспоненциальный закон

5. По графику определить максимальное по модулю отклонение между функциями F* n (x ) и F 0(x ).



6. Вычислить значение критерия

7. Принимают тот или иной уровень значимости (чаще всего 0,05 или 0,01). Тогда доверительная вероятность = 1 - .

8. Из таблицы вероятностей Колмогорова выбрать критическое значение.

9. Если > , то нулевая гипотеза H 0отклоняется, в противном случае - принимается, хотя она может быть неверна.

Достоинства критерия Колмогорова по сравнению с критерием 2: возможность применения при очень маленьких объемах выборки (n < 20) , более высокая "чувствительность", а следовательно, меньшая трудоемкость вычислений.

Недостаток: критерий можно использовать в том случае, если параметры Q 1, ..., Qk распределения заранее известны, а эмпирическая функция распреде­ления F *(x ) должна быть построена по несгруппированным выборочным данным.

Пример 3.3 . По критерию Колмогорова проверить гипотезу о равно­мерном законе распределения R (0,5; 5,25) случайной величины по выборке объема 10: 2,68 1,83 2,90 1,03 0,90 4,07 5,05 0,94 0,71 1,16, уровень значимости 0,5.

Решение . Вариационный ряд данной выборки имеет вид:

0,71 0,90 0,94 1,03 1,16 1,83 2,68 2,90 4,07 5,05.

После этого строим график эмпирической функции распределения F *(x ).

Теоретическая функция распределения F 0(x ) равномерного закона R (0,5;5,25) равна

Максимальная разность по модулю между графиками F *(x ) и F 0(x ) равна 0,36 при х = 1,16.

Вычислим значение статистики

Из таблицы Колмогорова выбираем критическое значение Так как < 1,36 , то гипотеза о равномерном законе распределения принимается.

Вопрос 3

λ - критерий Колмогорова-Смирнова

Назначение критерия

Критерий λ предназначен для сопоставления двух распределений:

а) эмпирического с теоретическим , например, равномерным или нормальным;

б) одного эмпирического распределения с другим эмпирическим распределением.

Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.

Описание критерия

Если в методе χ 2 мы сопоставляли частоты двух распределений отдельно по каждому разряду, то здесь мы сопоставляем сначала часто­ты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, мы сопоставляем всякий раз накопленные к данному разряду частоты.

Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, и мы сможем признать различия статистически достоверны­ми. В формулу критерия λ включается эта разность. Чем больше эмпи­рическое значение λ , тем более существенны различия.

Гипотезы -

Н 0: Различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними).

H 1: Различия между двумя распределениями достоверны (судя по точке максимального накопленного расхождения между ними).

Графическое представление критерия

Рассмотрим для иллюстрации распределение желтого (№4) цвета в 8-цветном тесте М. Люшера. Если бы испытуемые случайным обра­зом выбирали цвета, то желтый цвет, так же, как и все остальные, равновероятно мог бы занимать любую из 8-и позиции выбора. На практике, однако, большинство испытуемых помещают этот цвет, "цвет ожидания и надежды" на одну из первых позиций ряда.

На Рис. 4.9 столбиками представлены относительные частоты 8 попадания желтого цвета сначала на 1-ю позицию (первый левый стол­бик), затем на 1-ю и 2-ю позицию (второй столбик), затем на 1-ю, 2-ю и 3-ю позиции и т. д. Мы видим, что высота столбиков постоянно воз­растает, так как они отражают относительные частоты, накопленные к данной позиции. Например, столбик на 3-й позиции имеет высоту 0,51. Это означает, что на первые три позиции желтый цвет помещают 51% испытуемых.

8 Относительная частота, или частость, - это частота, отнесенная к общему коли­честву наблюдении; в данном случае это частота попадания желтого цвета на дан­ную позицию, отнесенная к количеству испытуемых. Например, частота попадания желтого цвета на 1-ю позицию ƒ=24; количество испытуемых n=102; относительная частота ƒ*=ƒ/n=О,235.

Прерывистой линией на Рис. 4.9 соединены точки, отражающие накопленные частоты, которые наблюдались бы, если бы желтый цвет с равной вероятностью попадал на каждую из 8-и позиций. Сплошными линиями обозначены расхождения между эмпирическими и теоретически­ми относительными частотами. Эти расхождения обозначаются как d .

Рис 4.9 . Сопоставления в критерии λ: стрелками отмечены расхождения между эмпирическими и теоретическими накоплениями относительными частотами по каждому разряду

Максимальное расхождение на Рис. 4.9 обозначено как d max Именно эта, третья позиция цвета, и является переломной точкой, опре­деляющей, достоверно ли отличается данное эмпирическое распределе­ние от равномерного. Мы проверим это при рассмотрении Примера 1.

Ограничения критерия λ

1. Критерии требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, что­бы n 1,2 > 50. Сопоставление эмпирического распределения с теоре­тическим иногда допускается при n> 5 (Ван дер Варден Б.Л., 1960; Гублер Е.В., 1978).

2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, мы можем за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточ­ности и т. д. В то же время, если мы возьмем разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в ме­тодике Хекхаузена разным испытуемым предъявляются в разном порядке, мы не вправе говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Мы не можем говорить об однонаправленном изменении признака при со­поставлении категорий "очередность рождения", "национальность", "специфика полученного образования" и т.п. Эти данные представ­ляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.

Итак, мы не можем накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упо­рядоченные по возрастанию или убыванию какого-либо признака кате­гории, нам следует применять метод χ 2 .

Пример 1: Сопоставление эмпирического распределения с теоретическим

Ввыборке здоровых лиц мужского пола, студентов технических и военно-технических вузов в возрасте от 19-ти до 22 лет, средний воз­раст 20 лет, проводился тест Люшера в 8-цветном варианте. Установ­лено, что желтый цвет предпочитается испытуемыми чаще, чем отверга­ется (Табл. 4.16). Можно ли утверждать, что распределение желтого цвета по 8-и позициям у здоровых испытуемых отличается от равно­мерного распределения?

Таблица 4.16

Эмпирические частоты попадания желтого цвета на каждую из 8 позиций (n=102)

Позиции желтого цвета

Эмпирические частоты

Сформулируем гипотезы.

H 0: Эмпирическое распределение желтого цвета по восьми позициям не отличается от равномерного распределения.

H 1: Эмпирическое распределение желтого цвета по восьми позициям отличается от равномерного распределения.

Теперь приступим к расчетам, постепенно заполняя результатами таблицу расчета критерия λ. Все операции лучше прослеживать по Табл. 4.17, тогда они будут более понятными.

Занесем в таблицу наименования (номера) разрядов и соответст­вующие им эмпирические частоты (первый столбец Табл. 4.17).

Затем рассчитаем эмпирические частости ƒ* по формуле:

ƒ* j = ƒ*/ n

где f j - частота попадания желтого цвета на данную позицию; n- общее количество наблюдений;

j - номер позиции по порядку.

Запишем результаты во второй столбец (см. Табл. 4.17).

Теперь нам нужно подсчитать накопленные эмпирические часто­сти ∑ƒ*. Для этого будем суммировать эмпирические частости ƒ*. На­пример, для 1-го разряда накопленная эмпирическая частость будет равняться эмпирической частости 1-го разряда, Eƒ* 1 =0,235 9 .

Для 2-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го и 2-го разрядов:

Eƒ* 1+2 =O,235+0,147=0,382

Для 3-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го, 2-го и 3-го разрядов:

Eƒ* 1+2+3 =0,235+0,147+0,128=0,510

Мы видим, что можно упростить задачу, суммируя накопленную эмпирическую частость предыдущего разряда с эмпирической частостью данного разряда, например, для 4-го разряда:

Eƒ* 1+2+3+4 =0,510+0,078=О,588

Запишем результаты этой работы в третий столбец.

Теперь нам необходимо сопоставить накопленные эмпирические частости с накопленными теоретическими частостями. Для 1-го разряда теоретическая частость определяется по формуле:

f * теор = 1/k

9 Все формулы приведены для дискретных признаков, которые могут быть выра­жены целыми числами, например: порядковый номер, количество испытуемых, ко­личественный состав группы и т.п.

где k - количество разрядов (в данном случае - позиций цвета).

Для рассматриваемого примера:

f * теор =1/8=0,125

Эта теоретическая частость относится ко всем 8-и разрядам. Действительно, вероятность попадания желтого (или любого другого) цвета на каждую из 8-и позиций при случайном выборе составляет 1/8, т.е. 0,125.

Накопленные теоретические частости для каждого разряда определяем суммированием.

Для 1-го разряда накопленная теоретическая частость равна теоретической частости попадания в разряд:

f * т1 =0,125

Для 2-го разряда накопленная теоретическая частость представ­ляет собой сумму теоретических частостей 1-го и 2-го разрядов:

f * т1+2 =0,125+0,125=0,250

Для 3-го разряда накопленная теоретическая частость представ­ляет собой сумму накопленной к предыдущему разряду теоретической частости с теоретической частостью данного разряда:

f * т1+2+3 =0,250+0,125=0,375

Можно определить теоретические накопленные частости и путем умножения:

S f * т j = f * теор * j

где f * теор - теоретическая частость;

j - порядковый номер разряда.

Занесем рассчитанные накопленные теоретические частости в четвертый столбец таблицы (Табл. 4.17).

Теперь нам осталось вычислить разности между эмпирическими и теоретическими накопленными частостями (столбцы 3-й и 4-й). В пя­тый столбец записываются абсолютные величины этих разностей, обо­значаемые как d .

Определим по столбцу 5, какая из абсолютных величин разности является наибольшей. Она будет называться d max . В данном случае d max =0,135.

Теперь нам нужно обратиться к Табл. X Приложения 1 для оп­ределения критических значений d max при n=102.

Таблица 4.17

Расчет критерия при сопоставлении распределения выборов желтого цвета с равномерным распределением (n=102)

Позиция желтого цвета

Эмпирическая частота

Эмпирическая частость

Накопленная эмпирическая частость

Накопленная теоретическая частость

Разность

Для данного случая, следовательно,

Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимое™ по соответствую­щей оси:

d эмп - d кр

Ответ: Но отвергается при р=0,05. Распределение желтого цве­та по восьми позициям отличается от равномерного распределения. Представим все выполненные действия в виде алгоритма

АЛГОРИТМ 14

Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями

1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).

ƒ* эмп = ƒ эмп / n

где ƒ эмп - эмпирическая частота по данному разряду;

п - общее количество наблюдений.

Занести результаты во второй столбец.

f * j =∑ f * j -1 + f * j

где f * j -1

j - порядковый номер разряда;

f* j:- эмпирическая частость данного j-ro разряда.

Занести результаты в третий столбец таблицы.

f j =∑ f j -1 + f j

где =∑ f j -1 - теоретическая частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

ƒ* т j: - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.

5.Вычислить разности между эмпирическими и теоретическими нако­пленными частостями по каждому разряду (между значениями 3-го и 4-го столбцов).

6.Записать в пятый столбец абсолютные величины полученных раз­ностей, без их знака. Обозначить их как d .

7. Определить по пятому столбцу наибольшую абсолютную величину разности - d max .

8. По Табл. X Приложения 1 определить или рассчитать критические значения d max для данного количества наблюдений n .

Если d max равно критическому значению d или превышает его, различия между распределениями достоверны.

Пример 2: сопоставление двух эмпирических распределений

Интересно сопоставить данные, полученные в предыдущем при­мере, с данными обследования X. Кларом 800 испытуемых (Klar H., 1974, р. 67). X. Кларом было показано, что желтый цвет является единственным цветом, распределение которого по 8 позициям не отли­чается от равномерного. Для сопоставлений им использовался метод χ 2 . Полученные им эмпирические частоты представлены в Табл. 4.18.

Таблица 4.18

Эмпирические частоты попадания желтого цвета на каждую из 8 пози­ций в исследовании X. Клара (по: Klar H., 1974) (п=800)

Разряды-позиции желтого цвета

Эмпирические частоты

Сформулируем гипотезы.

Н 0: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара не различаются.

H 1: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара отличаются друг от друга.

Поскольку в данном случае мы будем сопоставлять накопленные эмпирические частости по каждому разряду, теоретические частости нас не интересуют.

Все расчеты будем проводить в таблице по алгоритму 15.

АЛГОРИТМ 15

Расчет критерия λ при сопоставления двух эмпирических распределений

1.Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты, полученные в распределении 1 (первый столбец) и в распределении 2 (второй столбец).

ƒ* э =ƒ э / n 1

где ƒ э

n 1 [ - количество наблюдений в выборке.

Занести эмпирические частости распределения 1 в третей столбец.

ƒ* э =ƒ э / n 2

где ƒ э - эмпирическая частота в данном разряде;

n 2 - количество наблюдений во 2-й выборке.

Занести эмпирические частости распределения 2 в четвертый столбец таблицы.

∑ƒ* j =∑ƒ* j -1 +ƒ* j

где ∑ƒ* j -1 - частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

ƒ* j -1 - частости данного разряда.

Полученные результаты записать в пятый столбец.

7.Определить по седьмому столбцу наибольшую абсолютную величину разности

где n 1 - количество наблюдений в первой выборке;

n 2 - количество наблюдении во второй выборке.

9. По Табл. XI Приложения 1 определить, какому уровню статистической зна­чимости соответствует полученное значение λ.

Если λ эмп > 1,36, различия между распределениями достоверны.

Последовательность выборок может быть выбрана произвольно, так как расхождения между ними оцениваются по абсолютной величине разностей. В нашем случае первой будем считать отечественную выбор­ку, второй - выборку Клара.

Таблица 4.19

Расчет критерия при сопоставлении эмпирических распределений

желтого цвета в отечественной выборке (n1=102)

и выборке Клара (п2 =: 800)

Позиция желтого цвета

Эмпирические частоты

Эмпирические частости

Накоплены эмпирические частности

Разность

∑ƒ* 1 -∑ƒ* 2

∑ƒ* 1

∑ƒ* 2

Максимальная разность между накопленными эмпирическими частостями составляет 0,118 и падает на второй разряд.

В соответствии с пунктом 8 алгоритма 15 подсчитаем значение λ:

По Табл. XI Приложения 1 определяем уровень статистической
значимости полученного значения: р=0,16:

Построим для наглядности ось значимости.

На оси указаны критические значения λ соответствующие приня­тым уровням значимости: λ 0,05 =1,36, λ 0,01 =1,63.

Зона значимости простирается вправо, от 1,63 и далее, а зона незначимости – влево, от 1,36 к меньшим значениям.

λ эмп < λ кр

Ответ: Но принимается. Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара совпадают. Таким образом, распределения желтого цвета в двух выбор­ках не различаются, но в то же время они по-разному соотносятся с равномерным распределением: у Клара отличий от равномерного рас­пределения не обнаружено, а 8 отечественной выборке различия обна­ружены (р<0,05). Возможно, картину могло бы прояснить применение другого метода?

Е.В. Гублер (1978) предложил сочетать использование критерия λ с критерием φ* (угловое преобразование Фишера).

Об этих возможностях сочетания методов λ и φ* мы поговорим в следующей лекции.

.5. Алгоритм выбора критерия для сравнения распределений

На практике кроме критерия χ 2 часто используется критерий Колмогорова, в котором в качестве меры расхождения между теоретическим и эмпирическим распределениями рассматривают максимальное значение абсолютной величины разности между эмпирической функцией распределения и соответствующей теоретической функцией распределения

называемое статистикой критерия Колмогорова.

Задавая уровень значимости α, можно найти соответствующее критическое значение

В таблице приводятся критические значения , критерия Колмогорова для некоторых α.

Таблица 4.2.

Схема применения критерия Колмогорова

1.Строится эмпирическая функция распределения и предполагаемая теоретическая функция распределения F(x) .

2.Определяется статистика Колмогорова D – мера расхождения между теоретическим и эмпирическим распределением и вычисляется величина

3. Если вычисленное значение λ больше критического , то нулевая гипотеза Н 0 о том, что случайная величина Х имеет заданный закон распределения, отвергается.

Если , то считают, что гипотеза Н 0 не противоречит опытным данным.

Пример. С помощью критерия Колмогорова на уровне значимости α=0,05 проверить гипотезу Н 0 о том, что случайная величина Х – выработка рабочих предприятия – имеет нормальный закон распределения.

Решение . 1. Построим эмпирическую и теоретическую функции распределения.

Эмпирическую функцию распределения строят по относительным накопленным частотам.

Теоретическую функцию распределения построим согласно формуле

где

Результаты вычислений сведем в таблицу:

Таблица 4.3.

По опыту хождения на защиты курсовых и дипломных работ по психологии подметил ряд распространённых и коварных ошибок в работах. Задумал черкнуть текст, предостерегающий от таких ошибок. Буду благодарен, если специалисты по статистике проверят.

Чтобы не вываливать сразу много, пока первые пять пунктов.


1. Если по критерию Колмогорова-Смирнова получилось p-значение больше 0,05 (или 0,1) – распределение нормально, можно делать параметрические методы.

Критерий Колмогорова-Смирнова оценивает значимость различий между формой двух распределений. При проверке нормальности (на самом деле, это лишь частный случай применения K-S теста) речь идёт об обнаружении значимых отличий между формой Вашего распределения и моделью нормального. То есть p-значение больше 0,05 (и т.п.) следует понимать как «Я не нашёл различий между Вашим распределением и нормальным (значимых различий на этом уровне)».

А не найти различия можно просто потому, что на руках слишком мало данных для обнаружения. Точно так же, как следователь не может найти преступника при малом количестве улик. Это ещё не значит, что дело чисто.

Так вот, Колмогоров-Смирнов – весьма требовательный к объёму данных критерий, который начинает адекватно работать на выборке в районе 80. Чем меньше выборка – тем труднее ему углядеть что-нибудь. На выборках в 20-40 человек, которые часто бывают в студенческих работах, критерий Колмогорова-Смирнова практически всегда будет заявлять «Я не смог увидеть никаких различий», каким бы перекошенным не являлось Ваше распределение.

Прикиньте теперь весь ужас ситуации, когда студент перво-наперво сделал Колмогорова-Смирнова на малом количестве респондентов, радостно заключил о нормальности и пошёл напропалую пользоваться параметрическими методами? Это ведь ставит под сомнение АБСОЛЮТНО ВСЁ, что он потом получил в работе.

При выборке в несколько десятков (но ощутимо меньше 80) следует говорить лишь об условной нормальности данных, которая оценивается через величины ассиметрии и эксцесса по сравнению с их стандартными ошибками. Если же выборка составляет эдак 20 – здесь просто нет и не может быть нормальности. Никогда. Сразу обращайтесь к непараметрической статистике.

2. Если общая выборка исследования дала нормальное распределение, то дальше можно сравнивать что угодно с чем угодно при помощи параметрических методов.

Необходимость нормального распределения для параметрических методов связана с их опорой на средние значения (и другие параметры распределения). Когда в какой-то группе нет нормального распределения – среднее может быть бессмысленным (среднее чисел 9, 10, 11 и 130 равно 40 – результат не похож ни на одно из усредняемых чисел). А когда нормальность есть – среднее заведомо получится осмысленным.

Соответственно, ПРИ СРАВНЕНИИ ДВУХ групп через средние значения, нужно иметь ДВА осмысленных средних значения. При сравнении трёх – три, и так далее. Нормальное распределение на общей выборке Вам нужно только в том случае, если Вы делаете какие-то выводы об этой общей выборке. А сколько потом групп Вы изучаете параметрическими методами – столько у Вас и должно быть (условно) нормальных распределений.

3. Если получилось нормальное распределение, можно делать дисперсионный анализ.

Дисперсионный анализ как раз-таки мало уязвим к ненормальным распределениям (кроме некоторых частных случаев). Проверка подвыборок на нормальность желательна, но от нарушений нормальности ничего страшного, скорее всего, не случится.

Однако дисперсионный анализ предъявляет ещё два особых требования к данным. Во-первых, не должно быть значимых различий во внутригрупповых дисперсиях (проверяются тестом Ливеня) – это таит серьёзную угрозу, если Ваши группы заметно отличаются по размеру. Во-вторых и в-главных, факторы для многофакторного дисперсионного анализа должны быть независимы друг от друга. Не нарушайте этого условия, не используйте в качестве факторов связанные показатели! Тогда адекватное решение задачи достигается только структурным моделированием, а не дисперсионным анализом.

Чтобы облегчить себе жизнь, для многофакторного дисперсионного анализа лучше всего сразу набирать равномерный комплекс. Равномерный комплекс – это когда на все возможные сочетания факторов приходится одинаковое количество наблюдений (типа: 16 молодых женщин-узбечек, 16 молодых женщин-татарок, 16 молодых женщин-русских, 16 молодых мужчин-узбеков, 16 молодых мужчин-татар, 16 молодых мужчин-русских, 16 пожилых женщин-узбечек, 16 пожилых женщин-татарок, 16 пожилых женщин-русских, 16 пожилых мужчин-узбеков, 16 пожилых мужчин-татар, 16 пожилых мужчин-русских).

5.Корреляционный анализ позволяет выявить взаимосвязь.

Слово «взаимосвязь» регулярно появляется в работах, организация которых не позволяет найти причин и следствий. Студенты обычно в курсе, что корреляция не означает «влияния», это слово они предусмотрительно и заменяют «взаимосвязью».

Задумайтесь уже просто над звучанием слова. Взаимная связь. То есть связь в обе стороны. Если А взаимосвязано с Б – значит, через А происходит какое-то воздействие на Б и одновременно через Б – какое-то воздействие на А. Как Вы думаете, если корреляция не способна подтвердить влияние даже в одну сторону, может ли она подтвердить влияние в обе стороны?

Корреляция показывает НЕ ВЗАИМО-, А ПРОСТО СВЯЗЬ. Вовсе не обязательно двустороннюю. Связь может быть строго односторонней: только X влияет на Y безо всякого обратного воздействия. Или наоборот: только Y влияет на X. Связь может быть действительно взаимной. Она вообще может быть только опосредованной каким-то третьим Z, когда X и Y непосредственно друг на друга не действуют. В учебнике Майерса рассказывается, что высота надгробий высоко коррелирует с количеством прожитых лет, поскольку чем дольше прожил человек, тем больше он разбогател и тем более роскошный памятник закажут его родственники (это касается западных стран, конечно). Корреляция показывает какую-то связь, сама по себе не различая случаев одностороннего влияния, двустороннего влияния, опосредованного влияния. И говорить о «взаимосвязи», имея на руках только корреляцию, не более обоснованно, чем о «влиянии».

На этапе описания статистики ошибка – чисто языковая и легко исправимая. Проблемы возникают, когда на стадии интерпретации человек полагает, что доказал именно взаимосвязь и начинает рассуждать о взаимных отношениях X и Y.

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для сравнения эмпирического распределения с теоретическим.

Критерий позволяет найти точку, в которой сумма накопленных частот расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения. Нулевая гипотеза H 0 ={различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними)}.

Схематично алгоритм применения критерия Колмогорова-Смирнова можно представить следующим образом:

Проиллюстрируем использование критерия Колмогорова-Смирнова на примере.

При изучении творческой активности студентов были получены результаты для экспериментальных и контрольных групп (см. таблицу). Являются ли значимыми различия между контрольной и экспериментальной группами?

Уровень усвоения

Частота в экспериментальной группе

Частота в контрольной группе

Хороший

172 чел.

120 чел.

Приблизительный

36 чел.

49 чел.

Плохой

15 чел.

36 чел.

Объём выборки

n 1 =172+36+15=223

n 2 = 120+49+36=205

Вычисляем относительные частоты f , равные частному от деления частот на объём выборки, для двух имеющихся выборок.

В результате исходная таблица примет следующий вид:

Относительная частота экспериментальной группы ( f эксп )

Относительная частота контрольной группы ( f контр )

Модуль разности частот | f эксп – f контр |

172/223≈ 0.77

120/205≈ 0.59

0.18

36/223≈ 0.16

49/205≈ 0.24

0.08

15/223≈ 0.07

36/205≈ 0.17

Среди полученных модулей разностей относительных частот выбираем наибольший модуль, который обозначается d max . В рассматриваемом примере 0.18>0.1>0.08, поэтому d max =0.18.

Эмпирическое значение критерия λ эмп определяется с помощью формулы:

Чтобы сделать вывод о схожести по рассматриваемому критерию между двумя группами, сравним экспериментальное значение критерия с его критическим значением, определяемым по специальной таблице, исходя из уровня значимости . В качестве нулевой гипотезы примем утверждение о том, что сравниваемые группы незначительно отличаются друг от друга по уровню усвоения. При этом нулевую гипотезу следует принять в том случае, если наблюдаемое значение критерия не превосходит его критического значения.

Считая, что , по таблице определяем критическое значение критерия: λ кр (0,05)=1,36.

Таким образом, λ эмп =1,86>1,36= λ кр. Следовательно, нулевая гипотеза отвергается, и группы по рассмотренному признаку отличаются существенно.

Заметим, что объёмы рассматриваемых выборок должны быть достаточно большими: n 1 ≥50, n 2 ≥50.