История России

Основные типы шкал измерения. Что такое шкала? Виды шкал и их особенности Шкалы измерения данных

В основе любого наблюдения и анализа лежат измерения.
Измерение — это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через х i . i=1,…, m наблюдаемое состояние (свойство) объекта, а через у i , i = 1,..,m — обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!
Множество обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительное шкалой.
Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые — номинальные шкалы, а самые сильные — абсолютные.
Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:
1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;
2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;
3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.
Кроме того, выделяют следующие группы:
o неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая шкалы);
o количественные или метрические (шкала интервалов, шкала отношений и абсолютная шкала).

1. Шкала наименований
Шкала наименований (номинальная или классификационная) представляет собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта (рис. 1).
Здесь отсутствуют все главные атрибуты измерительных шкал, а именно упорядоченность, интервальность, нулевая точка.

Рис. 1. Номинальная шкала.

Измерение будет состоять в том, чтобы, проведя эксперимент над объектом, определить принадлежность результата к тому или иному состоянию и записать это с помощью символа (набора символов), обозначающего данное состояние. Это самая простая шкала из тех, что могут рассматриваться как измерительные, хотя фактически эта шкала не ассоциируется с измере-нием и не связана с понятием «величина». Она используется только с целью отличить один объект от другого.
Если классифицируются дискретные по своей природе объекты и явления, то естественнее всего использовать шкалу наименований.
Примеры:
Для обозначения в номинальной шкале могут быть использованы:
o слова естественного языка (например, географические названия, собственные имена людей и т. д.);
o произвольные символы (гербы и флаги государств, эмблемы родов войск, всевозможные значки и т. д.);
o номера (регистрационные номера автомобилей, официальных документов, номера на майках спортсменов);
o их различные комбинации (например, почтовые адреса, экслибрисы личных библиотек, печати и пр.).
Однако необходимость классификации возникает и в тех случаях, когда классифицируемые состояния образуют непрерывное множество (или континуум). Задача сводится к предыдущей, если все множество разбить на конечное число подмножеств, искусственно образуя тем самым классы эквивалентности; тогда принадлежность состояния к какому-либо классу снова можно регистрировать в шкале наименований. Однако условность введенных классов (не их шкальных обозначений, а самих классов) рано или поздно проявится на практике.
Примеры:
1. Например, возникают трудности точного перевода с одного языка на другой при описании цветовых оттенков: в английском языке голубой, лазоревый и синий цвета не различаются.
2. Названия болезней также образуют шкалу наименований. Психиатр, ставя больному диагноз «шизофрения», «паранойя», «маниакальная депрессия» или «психоневроз», ис-пользует номинальную шкалу; и все же иногда врачи не зря вспоминают, что «нужно лечить больного, а не болезнь»: название болезни лишь обозначает класс, внутри которого на самом деле имеются различия, так как эквивалентность внутри класса носит условный характер.
Необходимо понимать, что обозначения классов - это только символы, даже если для этого использованы номера. С этими номерами нельзя обращаться как с числами - это только цифры.
Пример. Если у одного спортсмена на спине номер 1, а другого - 2, то никаких других выводов, кроме того, что это разные участники соревнований, делать нельзя: например, нельзя сказать, что «второй в два раза лучше».
При обработке экспериментальных данных, зафиксированных в номинальной шкале, непосредственно с самими данными можно выполнять только операцию проверки их совпадения или несовпадения.

2. Порядковые шкалы
Следующей по силе за номинальной шкалой идет порядковая, шкала (ординальная, ранговая). Она применяется в тех случаях, когда наблюдаемый (измеряемый) признак состояния имеет природу, не только позволяющую отождествить состояния с одним из классов эквивалентности, но и дающую возможность в каком-то отношении сравнивать разные классы.
Порядковая шкала не имеет определенной количественной меры. При этом присутствует упорядоченность, но отсутствуют атрибуты интервальности и нулевой точки.
Единственными типами отношений между неколичественными значениями шкалы могут быть:
а) равенство одинаковых значений порядковых переменных величин, соответствующих объектам одной категории,
б) неравенство разных значений переменных величин, соответствующих объектам одной категории;
в) отношения «больше» или «меньше» между разными значениями переменных величин, соответствующих объектам одной категории.
Измерение в шкале порядка может применяться, например, в следующих ситуациях:
o когда необходимо упорядочить объекты во времени или пространстве. Это ситуация, когда интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением этих объектов;
o когда нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;
o когда какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

2.1. Типовые порядковые шкалы
Обозначив такие классы символами и установив между этими символами отношения порядка, мы получим шкалу простого порядка: А → В → C → D → E → F.

Примеры:
Нумерация очередности, неимение знания, призовые места в конкурсе, социально-экономический статус («низший класс», «средний класс», «высший класс»).
Разновидностью шкалы простого порядка являются оппозиционные шкалы. Они образуются из пар антонимов (например, сильный-слабый), стоящих на разных концах шкалы, где за середину берется позиция, соответствующая среднему значению наблюдаемой сущности. Как пра-вило, остальные позиции никак не шкалируются.
Иногда оказывается, что не каждую пару классов можно упорядочить по предпочтению: неко-торые пары считаются равными - одновременно А ≥ В и В≤ А, т. е. А = В.
Шкала, соответствующая такому случаю, называется шкалой слабого порядка.
Иная ситуация возникает, когда имеются пары классов, несравнимые между собой, т. е. ни А≥ В, ни В ≤ А. В таком случае говорят о шкале частичного порядка. Шкалы частичного порядка часто возникают в социологических исследованиях субъективных предпочтений. Например, при изучении покупательского спроса субъект часто не в состоянии оценить, какой именно из двух разнородных товаров ему больше нравится (например, клетчатые носки или фруктовые консервы, велосипед или магнитофон и т. д.); затрудняется человек и упорядочить по предпочтению любимые занятия (чтение литературы, плавание, вкусная еда, слушание музыки).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа. Например, нельзя вычислять выборочное среднее порядковых измерений.
Пример. Рассматривается испытание умственных способностей, при котором измеряется время, затрачиваемое испытуемым на решение тестовой задачи. В таких экспериментах время хотя и измеряется в числовой шкале, но как мера интеллекта принадлежит порядковой шкале.
Порядковые шкалы определяются только для заданного набора сравниваемых объектов, у этих шкал нет общепринятого, а тем более абсолютного стандарта.
Примеры:
1. При определенных условиях правомерно выражение «первый в мире, второй в Европе» — просто чемпион мира занял второе место на европейских соревнованиях.
2. Само расположение шкал является примером порядковой шкалы.

2.2. Модифицированные порядковые шкалы
Опыт работы с сильными числовыми шкалами и желание уменьшить относительность порядковых шкал, придать им хотя бы внешнюю независимость от измеряемых величин побуждают исследователей к различным модификациям, придающим порядковым шкалам некоторое (чаще всего кажущееся) усиление. Кроме того, многие величины, измеряемые в порядковых (принципиально дискретных) шкалах, имеют действительный или мыслимый непрерывный характер, что порождает попытки модификации (усиления) таких шкал. При этом иногда с полученными данными начинают обращаться как с числами, что приводит к ошибкам, неправильным выводам и решениям.
Примеры:
1. В 1811 г. немецкий минералог Ф. Моос предложил установить стандартную шкалу твердости, постулируя только десять ее градаций. 3а эталоны приняты следующие минералы с возрастающей твердостью: 1 - тальк; 2 - гипс; 3 - кальций, 4 - флюорит, 5 - апа-тит, б - ортоклаз, 7 - кварц, 8 - топаз, 9 - корунд, 10 - алмаз. Из двух минералов тверже тот, который оставляет на другом царапины или вмятины при достаточно силь-ном соприкосновении. Однако номера градаций алмаза и апатита не дают основания утверждать, что алмаз в два раза тверже апатита.
2. В 1806 г. английский гидрограф и картограф адмирал Ф. Бофорт предложил балльную шкалу силы ветра, определяя ее по характеру волнения моря: 0 - штиль (безветрие), 4 - умеренный ветер, 6 - сильный ветер, 10 шторм (буря), 12 - ураган.
3. В 1935 г. американский сейсмолог Ч. Рихтер предложил 12-балльную шкалу для оценки энергии сейсмических волн в зависимости от последствий прохождения их по данной территории. Затем он развил метод оценки силы землетрясения в эпицентре по его магнитуде (условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением или взрывами) на поверхности земли и глубине очага.

3. Шкалы интервалов
Следующая по силе шкала — шкала интервалов (интервальная шкала), которая в отличие от предыдущих, качественных, шкал уже является количественной шкалой. Эта шкала применяется, когда упорядочивание значений измерений можно выполнить настолько точно, что известны интервалы между любыми двумя из них (рис. 2).

Рис. 2. Шкалы интервалов.

В шкале интервалов присутствуют упорядоченность и интервальность, но нет нулевой точки. Шкалы могут иметь произвольные начала отсчета, а связь между показаниями в таких шкалах является линейной:
у = ах + b,
где а > 0; — ∞ Для этой шкалы справедливо следующее свойство:

Примеры:
1. Температура, время, высота местности - величины, которые по физической природе либо не имеют абсолютного нуля, либо допускают свободу выбора в установлении начала отсчета.
2. Часто можно услышать фразу: «Высота … над уровнем моря». Какого моря? Ведь уровень морей и океанов разный, да и меняется со временем. В России высоты точек земной поверхности отсчитывают от среднемноголетнего Уровня Балтийского моря в районе Кронштадта.
В этой шкале только интервалы имеют смысл настоящих чисел и только над интервалами следует выполнять арифметические операции. Если произвести арифметические операции над самими отсчетами по шкале, забыв об их относительности, то имеется риск получить бессмыс-ленные результаты.
Пример. Нельзя сказать, что температура воды увеличилась в два раза при ее нагреве от 9 до 18° по шкале Цельсия, поскольку для того, кто привык пользоваться шкалой Фаренгейта, это будет звучать весьма странно, так как в этой шкале температура воды в том же опыте изменится от 37 до 42°.

4. Шкалы разностей
Частным случаем интервальных шкал являются шкалы разностей: циклические (периодические) шкалы, шкалы, инвариантные к сдвигу. В такой шкале значение не изменяется при любом числе сдвигов.
у = х + nb,
n = 0, 1, 2,…
Постоянная b называется периодом шкалы.
Примеры. В таких шкалах измеряется направление из одной точки (шкала компаса, роза ветров и т. д.), время суток (циферблат часов), фаза колебания (в градусах или радианах).
Однако соглашение о хотя и произвольном, но едином для нас начале отсчета шкалы позволяет использовать показания в этой шкале как числа, применять к нему арифметические действия (до тех пор пока кто-нибудь не забудет об условности нуля, например при переходе на летнее время или обратно).

5. Шкалы отношений
Следующей по силе шкалой является шкала отношений (подобий). Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия, здесь присутствуют все атрибуты измерительных шкал: упорядоченность, интервальность, нулевая точка. Величины, измеряемые в шкале отношений, имеют естественный, абсолютный нуль, хотя остается свобода в выборе единиц (рис. 3):
у = ах,
где а ≠ 0

Рис. 3. Шкалы отношений

Примеры: Вес, длина, электрическое сопротивление, деньги - величина, природа которых соответствует шкале отношений. Из значений шкалы отношений видно, во сколько раз свойство одного объекта превосходит такое же свойство другого объекта.

6. Абсолютная шкала
Абсолютная (метрическая) шкала имеет и абсолютный нуль (b = 0), и абсолютную единицу (а = 1). В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и действительные числа, если кроме целых единиц присутствуют и части объектов.
Именно такими качествами обладает числовая ось, которую естественно называть абсолютной шкалой.
Важной особенностью абсолютной шкалы по сравнению со всеми остальными является отвлеченность (безразмерность) и абсолютность ее единицы. Указанная особенность позволяет производить над показаниями абсолютной шкалы такие операции, которые недопустимы для показаний других шкал, - употреблять эти показания в качестве показателя степени и аргумента логарифма.
Примеры:
1. Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т. п.
2. Примером абсолютной шкалы также является шкала температур по Кельвину.
Числовая ось используется как измерительная шкала в явной форме при счете предметов, а как вспомогательное средство присутствует во всех остальных шкалах.

7. Шкалирование
Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.
Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.
Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют ме-ста.
По мере развития соответствующей области знания тип шкалы может меняться.
Пример. Температура сначала измерялась по порядковой шкале (холоднее - теплее), затем — по интервальным шкалам (Цельсия, Фаренгейта, Реомюра), а после открытия абсолютного нуля температур — по абсолютной шкале (Кельвина).

Резюме
1. В основе любого наблюдения и анализа лежат измерения, которые представляют собой алгоритмические операции: данному наблюдаемому состоянию объекта ставится в соответствие определенное обозначение: число, номер или символ. Множество таких обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительной шкалой.
2. В зависимости от допустимых операций на измерительных шкалах их различают по их силе.
3. Самой слабой шкалой является номинальная шкала, представляющая собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта.
4. Следующей по силе считается порядковая шкала, дающая возможность в каком-то отноше-нии сравнивать разные классы наблюдаемых состояний объекта, выстраивая их в определенном порядке. Различают шкалы простого, слабого и частичного порядка. Численные значения порядковых шкал не должны вводить в заблуждение относительно допустимости математических операций над ними.
5. Еще более сильная шкала - шкала интервалов, в которой кроме упорядочивания обозначений, можно оценить интервал между ними и выполнять математические действия над этими интервалами. Разновидностью шкалы интервалов является шкала разностей или циклическая.
6. Следующей по силе идет шкала отношений. Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия (правда, при условии однотипности единиц измерения).
7. И, наконец, самая сильная шкала - абсолютная, с которой можно выполнять любые математические действия без каких-либо ограничений.
8. Отображение какого-либо свойства объекта или явления в числовом множестве называется шкалированием. Чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Однако применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка. Лучше всего производить измерения в той шкале, которая максимально согласована с объективными отношениями, которым подчинена наблюдаемая величина. Можно измерять и в шкале, более слабой, чем согласованная, но это приведет к потере части полезной информации.

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная.

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

  • разы;
  • проценты;
  • доли;
  • полные углы.

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Все виды шкал измерений обычно разделяются на следующие типы: шкалы наименований; шкалы порядка; шкалы интервалов (разностей); шкалы отношений; абсолютные шкалы; условные шкалы. Шкалы интервалов и отношений относят к метрическим шкалам, сюда же относят абсолютные шкалы как подтип шкал отношений (рис. 4.2).

Шкалы наименований характеризуются оценкой (отношением) эквивалентности качественных проявлений свойства или отличиями проявления этого свойства.

Множество проявлений качественного параметра свойства может быть упорядочено по признаку близости (сходства) качественных различий и (или) по признаку количественных различий в некоторых показателях этих свойств. Например, шкалы измерений цвета опираются на трехкоординатную модель цветового пространства, упорядоченную

Рис. 4.2.

по цветовым различиям (качественный параметр) и яркости (количественный параметр).

Отличительными признаками шкал наименований являются: неприменимость в них понятий нуля, единицы измерений, размерности, в них отсутствует отношения сопоставления тина "больше – меньше".

В них допустимы только изоморфные и гомоморфные преобразования. В шкалах не допускается изменение спецификаций, которые описывают конкретные шкалы. Чаще всего наименования устанавливаются рядом "классов эквивалентностей". Примерами этого могут служить шкалы измерений цвета, геодезические шкалы для обозначения местоположения на Земле в установленных системах координат; шкалы запахов; шкалы групп крови человека с учетом резус-фактора и пр.

Например, шкала цветов может быть представлена в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальной оценке) эквивалентности испытуемого образца с одним из этатонных образцов, входящих в атлас цветов.

Шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства.

Отличительными особенностями шкал порядка является отсутствие единицы измерений и размерности; необязательность наличия нуля; допустимость любых монотонных преобразований; недопустимость изменения спецификаций, описывающих конкретные шкалы.

Примерами шкал порядка могут быть шкалы:

  • твердости материалов: металлов (международные шкалы Бринелля, Роквела, Виккерса, Шора), минералов, резины, пластмасс и др.;
  • интенсивности и балльности землетрясений;
  • силы ветра и состояния поверхности моря (шкала Бофорта);
  • белизны различных объектов (бумаги, древесины, муки и пр.);
  • чисел светочувствительности фотоматериалов;
  • громкостей и уровней громкости;
  • интенсивности вкуса и запаха воды;
  • октановых и цетановых чисел топлива для двигателей;
  • чисел падения для зерна и муки;
  • оценки событий на атомных электростанциях;
  • кислотных, йодных, бромных, перманганатных, медных, хлорных, перекисных и др. чисел для различных материалов и продуктов.

Условные шкалы – это шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.

Подобное расширение применения шкал измерений выходит за рамки обычного понимания метрологии в смысле ориентированности на измерение физических величин.

Остановимся на содержании ряда важных условных шкал, в частности шкал твердости (шкал чисел твердости). Твердость оценивается по условным шкалам Бринелля (НВ), Виккерса (HV), Роквелла (HR) и др.

По условной шкале Бринелля твердость (число твердости) измеряют, вдавливая стальной закаленный шарик (диаметром 10 мм, 5 мм, 2,5 мм) в испытуемый образец, с помощью отношения усилия (нагрузки) F на шарик к площади S отпечатка, остающегося на образце,

где О – диаметр шарика, мм; d – диаметр отпечатка, мм; F – нагрузка на шарик, Н или кгс (1 кгс ≈ 9,8 Н).

По условной шкале Виккерса число твердости определяют, вдавливая в испытуемый образец алмазный наконечник, имеющий форму четырехгранной пирамиды (с углом при вершине 136°), с приложением усилия Fot 49 Н (5 кгс) до 980 Н (100 кгс) в течение времени выдержки, например, 10 с, 15 с, 20 с.

После приложения усилия с помощью микроскопа измеряется длина диагоналей на отпечатке d 1, d 2. Число твердости по Виккерсу определяется по формуле

Условной единицей, как в шкалах твердости по Бри- неллю и Виккерсу, является число твердости по Роквеллу. При измерении твердости по Роквеллу стандартный наконечник (стальной шарик или алмазный конус) вдавливается с помощью прессов Роквелла в испытуемый образец под действием двух усилий: предварительного F0 и общего F, причем F = F 0 + F 1.

Пресс Роквелла имеет три шкалы (А , В, С). Измерение твердости по шкалам А и С производится путем вдавливания в образец алмазного наконечника (конус с углом 120°). При измерении по шкале Л усилие F0 = 98 Н (10 кгс), F 1 = = 490 Н (50 кгс), а общее усилие F = 588 Н.

При измерении по шкале С усилие F 0 = 98 Н, F 1 = 1372 Н (140 кгс), F = 1470 Н (150 кгс).

Для сравнительно мягких материалов используется шкала В. При этом используется стальной шарик диаметром 1,588 мм под действием нагрузок F0 = 98 H, F1 = 882 H (90 кгс), F = 980 Н (100 кгс).

Твердость по Роквеллу обозначают в зависимости от применяемой шкалы HRA, HRB, HRC с указанием числа твердости, которое определяется в случае шкал A и С по формуле

HR = 100 – (h h 0) / 0,002, (4.6)

а в случае шкалы В

HRB = 130 – (h h 0) / 0,002 (4.7)

где h 0 – глубина внедрения наконечника в образец под действием предварительного усилия, h – глубина внедрения наконечника в образец под действием общего усилия, измеренного после снятия нагрузки F 1, с оставлением предварительной нагрузки.

В России имеется специальный эталон воспроизведения твердости по шкале HRC и HRC Э (шкала Супер-Роквелла). Для пересчета шкал HRC и HRC Э существуют официальные таблицы.

В настоящее время требования к твердости рекомендуется указывать числами по шкале HRC Э.

В ряде случаев применяется число твердости по Моосу, определяемое по 10-балльной шкале, применяемой для изучения твердости минералов. При этом более твердому минералу приписывается более высокий балл.

Так, если тальк имеет число твердости (балл), равный единице, гипс – двум, то кварцу соответствует число твердости, равное семи, топазу – восьми, корунду – девяти, алмазу – 10.

Шкала Мооса, "старейшая" из шкал твердости, была предложена в 1822 г.

Позже для минералов стала применяться 12-балльная шкала Брейтгаупта. Балл 1 по-прежнему приписывается тальку, но алмаз имеет 12-й балл. Таким образом, между этими шкалами нет принципиального различия.

Для определения твердости растягивающихся тел применяется число твердости по Шору, связанное с числом твердости по Бри неллю.

При этом НВ соответствует 7 Н Ш, где Н Ш – число делений шкалы Шора, которое находится по высоте, на которую отскакивает боек при испытаниях.

Для определения твердости резины применяется шкала Шора и международный стандарт, по которому твердость резины рассчитывается по глубине погружения индикатора в испытуемый образец.

Шкалы разностей (интервалов ) отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и равенства и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Например, шкала интервалов времени, в которой интервалы времени (период работы, учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно. Другим примером может служить шкала длин (расстояний), оцениваемая путем совмещения нуля линейки с одной точкой через пространственный интервал до другой точки, у которой и выполняют отсчет. К шкалам этого типа относятся практические шкалы температур с условным нулем.

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и условные нули, основанные на каких-либо реперах. В этих шкалах допустимы линейные преобразования, в них применимы процедуры математического ожидания, стандартного отклонения и пр.

К шкалам разностей относят:

  • 1) Международную шкалу равномерного атомного времени ТА, в которой размер единицы соответствует определению секунды в СИ;
  • 2) шкалу всемирного времени UT0, длительность секунды в которой равна средней солнечной секунде;
  • 3) шкалу всемирного времени UT1, отличающуюся от UT0 поправкой на перемещение полюсов Земли;
  • 4) шкалу всемирного времени UT2, отличающуюся от UT1 поправкой на сезонную неравномерность вращения Земли;
  • 5) шкалу координированного времени UTC, в которой размер секунды такой же, как в ТА, но начало счета может меняться ровно на 1 с, чтобы расхождения между UTC и UT2 не превышало 0,9 с;
  • 6) календари (григорианский, юлианский, мусульманский, лунный и др.);
  • 7) шкалу температуры по Цельсию, в которой единица измерений – градус Цельсия – равна Кельвину и за условный нуль принята термодинамическая температура 273,16 К;
  • 8) шкалу окислительных потенциалов водных растворов.

Шкалы отношений описывают свойства величин, для множеств количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования.

В шкалах отношения существует естественный нуль и по согласованию устанавливается единица измерения.

Примерами шкалы отношений являются:

  • 1) шкала массы (аддитивная);
  • 2) шкала частот, в которой размер единицы соответствует определению герца в СИ;
  • 3) шкала термодинамической температуры (пропорциональная), в которой размер единицы соответствует определению кельвина в СИ. К этой шкале максимально приближена международная температурная шкала МТШ-90, которая опирается на ряд реперных точек;
  • 4) шкала силы света оптического излучения, в которой размер единицы соответствует определению канделы в СИ с использованием для различных по спектру излучений стандартизированной Международной комиссией по излучению (МКО) эмпирической функции относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Эта шкала является исходной для шкал всех световых величин;
  • 5) шкалы уровня звука А, В, С и D, стандартизированные на международном уровне. Уровень звукового давления в этих шкалах принято выражать в логарифмических шкалах (в децибелах относительно опорного значения 2 × 10-5 Па);
  • 6) шкалы измерения раздражающего действия шума (шумности и уровня воспринимаемого шума), стандартизированные на международном уровне;
  • 7) аудиометрические шкалы (для измерения остроты и степени потери слуха);
  • 8) псофометрические шкалы (для измерения действия шумов в линиях связи);
  • 9) шкалы доз (поглощенной и эквивалентной) и мощности доз ионизирующих излучений;
  • 10) шкала водородного показателя pH водных растворов (десятичного логарифма активности ионов водорода в грамм-молях на литр, взятого с обратным знаком, реализуемая с использованием ряда реперных растворов);
  • 11) Международная сахарная шкала, установленная рекомендацией Международной организацией законодательной метрологии;
  • 12) шкала жесткости воды.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины.

Отличительным признаком абсолютных шкал является наличие естественных нуля и арифметической единицы измерений, которые нс зависят от принятой системы единиц; допустимость только тождественных преобразований; допустимость изменения спецификаций, описывающих конкретные шкалы.

Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах. Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. В частности, скорость передачи информации может быть выражена в битах в секунду.

Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений в таких шкалах принимают какое-то определенное число частиц (квантов). Так, один моль – это число частиц, равное числу Авогадро.

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства объектов. Разнообразное проявление любого свойства образуют множества - шкалы измерения этих свойств.

В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений, абсолютные шкалы, условные шкалы.

Шкалы наименований (шкала квалификации) - это качественные шкалы, которые не содержат нуля и единиц измерений, здесь отсутствуют отношения типа «больше - меньше». В шкалах наименований отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с помощью органов чувств человека – это наиболее адекватный результат, выбранный большинством экспертов.

Примером может служить шкала цветов (атлас цветов). Измерение заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа цветов).

Шкалы порядка (шкала рангов) . Свойства величин описывают по возрастанию или убыванию количественного проявления свойства. В этих шкалах может иметься нулевая отметка, но отсутствуют единицы измерения, поскольку невозможно установить, в какое число раз больше или меньше проявляется свойство величины.

Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием .

Q1 > Q4 > Q2 > Q3 > Q5 - шкала возрастающего порядка

Q3 < Q2 < Q1< Q5 < Q4 - шкала убывающего порядка.

Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка.

С целью облегчения измерений по шкале порядка часто некоторые выбранные размеры фиксируют в качестве опорных (реперных ).

Например, знания, интенсивность землетрясений и многое другое оценивают по реперным шкалам порядка. Реперным размерам присваиваются цифровые величины, называемые баллами.

Баллы - безразмерные численные величины. Оценки по шкалам порядка широко используются в социальной сфере, в экономике, в области интеллектуального труда, в искусстве, в гуманитарных и медицинских науках, словом там, где чисто количественные измерения затруднены или пока невозможны.

Шкала интервалов (шкала разностей). Шкала измерений, на которой фиксируются отличия (разница) сопоставляемых размеров, носит название шкалы интервалов.

Описывать свойства величин можно с применением суммирования и пропорциональности интервалов (разностей) между количественными проявлениями данного свойства.

Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало – нулевую точку. По данным шкалы интервалов можно определить не только то, что один размер больше или меньше другого, но и оценить, на сколько один размер отличается от другого. На этой шкале можно осуществлять арифметические действия с интервала-


Математической моделью сравнения между собой двух размеров одной служит выражение

Qi - Qj = D , в котором при построении шкалы интервалов с размером Qj сравниваются все другие размеры Qi .

Начало отсчета (нулевое значение величины) на шкале интервалов выбирается произвольно.

Деление шкалы на равные части, т.е. градация шкалы, тоже не регламентируется. Однако градация позволяет выразить результат измерения в числовой мере. Градация здесь служит единицей измерения.

К таким шкалам относится летоисчисление по различным календарям, температурные шкалы Цельсия, Фаренгейта, Рюмера, шкалы времени и длины.

Например, измерение температур по шкале интервалов. Единица градации в этом случае называется градусом. На шкале Цельсия за начало отсчета принята реперная (опорная) точка - критическая температура замерзания воды (таяния льда). С этой температурой сравниваются все другие температуры. Однако для сравнений выбран масштабный интервал от нулевого значения температуры до температуры кипения воды. Этот интервал в данном случае разделен на 100 градаций. В интервальной шкале Рюмера для измерения температуры в качестве реперной точки с нулевым значением показателя также принята температура таяния льда, а за интервал масштаба температуры от точки таяния льда до температуры кипения воды. Однако этот интервал масштаба разделен не на 100 частей, как в системе Цельсия, а на 80 градаций (градусов).

Шкала отношений. Шкала отношений - это измерительная шкала, на которой отсчитывается (определяется) численное значение измеряемой величины N как математическое отношение определенного размера

Qi к другому размеру Qj, т.е.

N= Qi / Qj.

Размер Qj , выступает в качестве единицы измерения, так как число N показывает, сколько размеров Qj , укладывается в размере Qi . При необходимости соблюдения единства (тождественности, одинаковости) измерений в качестве размера Q используют узаконенную единицу измерения [Q ]. В таком случае N= Qi / [Q ].

Шкала отношений является шкалой интервалов с естественным началом отсчета. Шкала отношений не имеет отрицательных значений, со значениями N или Q возможны все математические действия. Поэтому шкала отношений является наиболее совершенной и широко применяемой. Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала весов, начинаясь с нулевой отметки, может быть градуирована по-разному в зависимости от требуемой точности взвешивания.

Абсолютные шкалы всегда имеют определение единицы измерения физической величины.

Условные шкалы - это шкалы физических величин, исходные значения которых выражены в условных единицах, иногда их называют неметрическими. К ним относятся шкалы твердости минералов и металлов.

Шкала средства измерений - это упорядоченная совокупность отметок и цифр, соответствующая ряду последовательных значений измеряемой величины.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) - температура кипения воды. Одна сотая часть этого интервала – градус Цельсия (°С), является единицей температуры.

ГП Всероссийский научно-исследовательский институт
физико-технических и радиотехнических измерений

(ГП ВНИИФТРИ)

УТВЕРВДАЮ

Зам. Директора

ГП "ВНИИФТРИ"

Ю.И. Брегадзе

________________

РЕКОМЕНДАЦИЯ Государственная система обеспечения единства измерений

Шкалы измерений. Основные положения. Термины и определения

МИ 2365-96

ГСИ. Шкалы измерений. Основные положения.

Термины и определения

МИ 2365-96

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ 2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ
В настоящей рекомендации приведены основные положения теории шкал измерений, а также соответствующие термины и определения необходимые для правильного понимания и практического применения шкал измерений метрологами и приборостроителями. Термин "шкала" в метрологической практике имеет, по крайней мере, два различных значения. Во-первых, шкалой или точнее шкалой измерений называют принятый по соглашению порядок определения и обозначения всевозможных проявлений (значений) конкретного свойства (величины) Во-вторых, шкалой называют отсчетные устройства аналоговых средств измерений, В настоящей рекомендации термин "шкала" используется только в первом из приведенных выше значений. В первом разделе настоящей рекомендации даны основные положения теории шкал измерений. Второй раздел содержит термины по метрологии, определения которых учитывают положения теории и опыта практического применения шкал измерений.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Измерению подлежат различные проявления свойств тел, веществ, явлений, процессов. Некоторые свойства при этом проявляются количественно (длина, масса, температура и т.п.), а другие - качественно (например, цвет, т.к. не имеет смысла выражение типа "красный цвет больше (меньше) синего"). Многообразие (количественное или качественное) проявлений любого свойства образуют множества, отображение элементов которых на упорядоченные множества чисел или, в более общем случае, на систему условных знаков образуют шкалы измерения этих свойств. Такими системами знаков являются, например, множество обозначений (названий) цветов, совокупность классификационных символов или понятий, множество баллов оценки состояний объекта, множество действительных чисел и т.д. Элементы множеств проявления свойств находятся в определенных логических соотношениях между собой. Такими соотношениями могут быть "эквивалентность" (равенство) или "сходство" (близость) этих элементов, их количественная различимость ("больше", "меньше"), допустимость выполнения определенных математических операций сложения, вычитания, умножения деления с элементами множеств и т.д. Эти особенности элементов множеств проявления свойств определяют типы (особенности соответствующих им шкал измерений). В соответствии с логической структурой проявления свойств в теории измерений различают пять основных типов шкал измерений: наименований, порядка, разностей (интервалов), отношений и абсолютные шкалы. Каждый тип шкалы обладает определенными признаками, основные из которых рассматриваются ниже. ШКАЛЫ НАИМЕНОВАНИЙ отражают качественные свойства. Их элементы характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойств. Примерами таких шкал является шкала классификации (оценки) цвета объектов по наименованиям (красный, оранжевый, желтый, зеленый и т.д.), опирающаяся на стандартизованные атласы цветов, систематизированные по сходству. В таких атласах, выполняющих роль своеобразных эталонов, цвета могут обозначаться условными номерами (координатами цветами). Измерения в шкале цветов выполняются путем сравнения при определенном освещении образцов цвета из атласа с цветом исследуемого объекта и установления эквивалентности их цветов. В шкалах наименований нельзя ввести понятия единицы измерения; в них отсутствует и нулевой элемент. Шкалы наименований, по существу, качественны; однако возможны некоторые статистические операции при обработке результатов измерений в этих шкалах, например, можно найти модальный или наиболее многочисленный класс эквивалентности. ШКАЛЫ ПОРЯДКА - описывают свойства, для которых имеют смысл не только соотношения эквивалентности, но и соотношения порядка по возрастанию или убыванию количественного проявления свойства. Характерным примером шкал порядка являются существующие шкалы чисел твердости тел, шкалы баллов землетрясений, шкалы баллов ветра, шкала оценки событий на АЭС и т.п. Узкоспециализированные шкалы порядка широко применяются в методах испытаний различной продукции. В этих шкалах также нет возможности ввести единицы измерений из-за того, что они не только принципиально нелинейны, но и вид нелинейности может быть различен и неизвестен на разных ее участках. Результаты измерений в шкалах твердости, например, выражаются в числах твердости по Бринеллю, Виккерсу, Роквеллу, Шору, а не в единицах измерений. Шкалы порядка допускают монотонные преобразования, в них может быть или отсутствовать нулевой элемент. ШКАЛЫ РАЗНОСТЕЙ (ИНТЕРВАЛОВ) - отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Характерный пример - шкала интервалов времени. Интервалы времени (например, периоды работы, периоды учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно. Другой пример, шкала длин (расстояний) - пространственных интервалов определяется путем совмещения нуля линейки с одной точкой, а отсчет делается у другой точки. К этому типу шкал относятся и шкалы температур по Цельсию, Фаренгейту, Реомюру. Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и нули, опирающиеся на какие-либо реперы. В этих шкалах допустимы линейные преобразования, в них применимы процедуры для отыскания математического ожидания, стандартного отклонения, коэффициента ассиметрии и смещенных моментов. ШКАЛЫ ОТНОШЕНИЙ . К множеству количественных проявлений в этих шкалах применимы соотношения эквивалентности и порядка - операции вычитания и умножения, (шкалы отношений 1-го рода - пропорциональные шкалы), а во многих случаях и суммирования (шкалы отношений 2-го рода - аддитивные шкалы). В шкалах отношений существуют условные (принятые по соглашению) единицы и естественные нули. Примерами шкал отношений являются шкалы массы (2-го рода), термодинамическая температурная шкала (1-го рода). Массы любых объектов можно суммировать, но суммировать температуры разных тел нет смысла, хотя можно судить о разности и, отношении их термодинамических температур. Шкалы отношений широко используются в физике и технике, в них допустимы все арифметические и статистические операции. АБСОЛЮТНЫЕ ШКАЛЫ - обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерений. Такие шкалы используются для измерений относительных величии (отношений одноименных величин: коэффициентов усиления, ослабления, КПД, коэффициентов отражений и поглощений, амплитудной модуляции и т.д.). ЛОГАРИФМИЧЕСКИЕ ШКАЛЫ - логарифмическое преобразование шкал, часто применяемое на практике, приводит к изменению типа шкал. Практическое распространение получили логарифмические шкалы на основе применения систем десятичных и натуральных логарифмов, а также логарифмов с основанием два. Логарифм есть число безразмерное, поэтому перед логарифмированием преобразуемая размерная величина в начале обращается в безразмерную путем ее деления на принятое по соглашению произвольное (опорное) значение той же величины, после чего выполняется операция логарифмирования. В зависимости от типа шкалы, подвергнутой логарифмическому преобразованию, логарифмические шкалы могут быть двух видов. При логарифмическом преобразовании абсолютных шкал получаются абсолютные логарифмические шкалы, называемые иногда логарифмическими шкалами с плавающим нулем, т.к. в них не фиксируется опорное значение. Примерами таких шкал являются шкалы усиления (ослабления) сигнала в дБ. Для значений величин в абсолютных логарифмических шкалах допустимы операции сложения и вычитания. При логарифмическом преобразовании шкал отношений и интервалов получается логарифмическая шкала интервалов с фиксированным нулем, соответствующим принятому опорному значению преобразуемой шкалы. В радиотехнике в качестве опорного чаще всего принимают значения 1 мВт, 1 В, 1 мкВ; в акустике - 20 мкПа и др. К этим шкалам в общем случае нельзя прямо применять ни одно арифметическое действие; сложение и вычитание величин, выраженных в значениях таких шкал, должно проводиться путем нахождения их антилогарифмов, выполнения необходимых арифметических операций и повторного логарифмирования результата. БИОФИЗИЧЕСКИЕ ШКАЛЫ . В метрологической практике существует ряд шкал, которыми описываются реакции биологических объектов, прежде всего человека, на воздействующие на них физические факторы. К ним относятся шкалы световых и цветовых измерений, шкалы восприятия звуков, шкалы эквивалентных доз ионизирующих излучений и др. Будем называть такие шкалы биофизическими. Биофизическая шкала - шкала измерений свойств физического фактора (стимула), модифицированная таким образом, чтобы по результатам измерений этих свойств можно было прогнозировать уровень или характер реакции биологического объекта на действие этого фактора. Такие шкалы строятся по моделям, так модифицирующим (трансформирующим) результаты измерений свойства стимула, чтобы было однозначное соответствие между результатом измерений и характеристикой биологической реакции (гомоморфное отображение множества стимулов на множество реакций). При этом некоторому подклассу множества стимулов могут соответствовать эквивалентные реакции. Такая модифицированная шкала стимулов, естественно, по логической структуре приближается к структуре шкалы реакций и приобретает некоторую прогностическую ценность. Однако, как правило, биофизическая шкала стимулов и шкала соответствующих реакций являются шкалами разных типов, поэтому на прогностические суждения о реакциях, вызываемых стимулами, нельзя прямо переносить логические соотношения шкалы стимулов. Так, например, шкала яркостей с точки зрения стимулов является неограниченной аддитивной шкалой отношений, а с точки зрения восприятия человеком - шкалой порядка в ограниченном снизу и сверху диапазоне значений стимулов. Большинство свойств описывается одномерными шкалами, однако имеются свойства, описываемые многомерными шкалами - трехмерные шкалы цвета в колориметрии, двухмерные шкалы электрических импедансов и др. Основные признаки и особенности типов шкал систематизированы в таблице 1. Практическая реализация шкал измерений достигается путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий (спецификаций) их однозначного воспроизведения. Шкалы наименований и порядка могут реализовываться и без эталонов (шкала-классификация Линнея, шкала запахов, шкала Бофорта), но если создание эталонов необходимо, то они воспроизводят весь применяемый на практике участок шкалы (пример - эталоны твердости). Внесение любых изменений в спецификацию, определяющую шкалу наименований или порядка, практически означает введение новой шкалы. Шкалы разностей и отношений (метрические шкалы), соответствующие SI , как правило воспроизводятся эталонами. Эталоны этих шкал измерений могут воспроизводить одну точку шкалы (эталон массы), некоторый участок шкалы (эталон длины) или практически всю шкалу (эталон времени). В метрологических НД обычно говорится только об установлении и воспроизведении единиц измерений. На деле даже для величин, соответствующих основным единицам SI (секунда, кельвин, кандела и др.), эталоны кроме единиц хранят и воспроизводят шкалы (атомного и астрономического времени, температурную МТШ-90 и т.д.). При любом варианте построения эталонов поверочными схемами предусматривается воспроизведение всех необходимых для практики участков шкал. Абсолютные шкалы могут опираться на эталоны, воспроизводящие любые их участки (как эталоны метрических шкал), но могут воспроизводится и без них (КПД, коэффициент усиления). Особенности воспроизведения (реализации) шкал систематизированы в таблице 2.

Таблица 1

Основные признаки классификации шкал измерений

Признак типа шкалы измерений

Тип шкалы измерений

Наименований

Порядка

Разностей (интервалов)

Отношений

Абсолютные

1-го рода

2-го рода

Допустимые логические и математичес­кие соотношения между проявлениями свойств Эквивалент­ность Эквивалент­ность, порядок Эквивалент­ность, порядок, суммирование интервалов Эквивалент­ность, порядок, пропорцио­нальность Эквивалент­ность, порядок, суммирование
Наличие нуля Не имеет смысла Необязательно Имеется естественное определение нуля Имеется естественное определение нуля
Наличие единицы измерения Не имеет смысла Не имеет смысла Устанавлива­ется по соглашению Устанавлива­ется по соглашению Устанавлива­ется по соглашению Имеется естественный критерий установления размера единиц
Многомерность Возможна Возможна Возможна Возможна Возможна Возможна
Допустимые преобразования и зоморфное отображение м онотонные преобразова­ния Умножение на число Умножение на число о тсутствуют
Таблица 2

Особенности реализации шкал измерений

Особенности реализации шкал

Тип шкалы измерений

Наименований

Порядка

Разностей

Отношений

Абсолютные

Введение единиц измерений Принципиально невозможно ввести единицы измерений Есть возможность ввести единицы изменений Есть возможность ввести единицы изменений
Необходимость эталона реализуемой шкалы Шкалы могут реализовываться без специальных эталонов Большинство шкал реализуются только посредством специальных эталонов Шкалы могут быть реализованы без эталонов
Что должен воспроизводить эталон при его наличии Весь используемый участок шкалы Какую либо часть или точку шкалы и условный нуль Какую либо часть или точку шкалы Обязательные требования отсутствуют

2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Метрология Наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Законодательная метрология Раздел метрологии, включающий взаимосвязанные законодательные и научно-технические вопросы, нуждающиеся в регламентации со стороны государства и (или) мирового сообщества, для обеспечения единства измерений. Теоретическая метрология Раздел метрологии, в котором изучаются и разрабатываются ее теоретические основы (теория измерений, теория шкал измерений, проблемы установления систем единиц измерений, вопросы использования в метрологии фундаментальных констант и др.). Практическая (прикладная) метрология Раздел метрологии, в котором изучаются и разрабатываются вопросы практического применения положений теоретической и законодательной метрологии. Единство измерений Состояние измерений, при котором их результаты выражены в узаконенных единицах или шкалах измерений, а неопределенности (погрешности) результатов измерений не выходят за установленные границы (с заданной вероятностью). Примечание. Данное определение понятия "единства измерений" не противоречит Закону "Об обеспечении единстве измерений" (статья 1), но распространяет его на шкалы наименований и порядка (см. "шкала измерений"). Шкала измерений (шкала) Отображение множества различных проявлений качественного или количественного свойства на принятое по соглашению упорядоченное множество чисел или другую систему логически связанных знаков (обозначений). Примечания. 1. Понятие шкала измерений (кратко - шкала) не следует отождествлять с отсчетным устройством (шкалой) средства измерений. 2. Различают пять типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные. 3. Примерами систем знаков, образующих шкалы измерений, являются множество баллов оценки свойств объектов, множество обозначений (названий) цвета объекта, множество названий состояния объекта, совокупность классификационных символов или понятий и т.п. 4. Шкалы разностей и отношений объединяют термином "метрические шкалы". 5. Различают одномерные и многомерные шкалы измерений. Шкала величины Шкала измерений количественного свойства. Тип шкалы Классификационный признак данной шкалы измерений, характеризующий совокупность присущих ей логических соотношений. Шкала наименований Шкала измерений качественного свойства, характеризующаяся только соотношением эквивалентности различных проявлений этого свойства. Примечания. 1. Множество проявлений (реализации) качественного свойства может быть упорядочено по признаку близости (сходства) и (или) по признаку возможных количественных различий в некоторых подмножествах проявления свойства. Например, шкалы измерений цвета опираются на трехкоординатную модель цветового пространства, упорядоченную по цветовым различиям (качественный признак) и яркости (количественный признак). 2. Отличительные признаки шкал наименований: неприменимость в них понятий: нуля, единицы измерений, размерности; допустимость только изоморфных или гомоморфных преобразований; возможность реализации как с помощью эталонов, так и без них; недопустимость изменения спецификаций, описывающих конкретные шкалы. Чаще всего шкалы наименований определяются рядом "классов эквивалентности". Шкала порядка Шкала количественного свойства, характеризующаяся соотношениями эквивалентности и порядка по возрастанию (убыванию) различных проявлений свойства. Примечание. Отличительные признаки шкал порядка: неприменимость в них понятий "единица измерений" и "размерность", необязательность наличия нуля, допустимость любых монотонных преобразований, возможность реализации как с помощью эталонов, так и без них, недопустимость изменения спецификаций, описывающих конкретные шкалы. Шкала измерений количественного свойства, характеризующаяся соотношениями эквивалентности, порядка, суммирования интервалов различных, проявлений свойства. Примечание. Отличительные признаки шкал разностей: наличие устанавливаемых по соглашению нуля и единицы измерений, применимость понятия "размерность", допустимость линейных преобразований, реализация только посредством эталонов, допустимость изменения спецификаций, описывающих конкретные шкалы. Шкала отношений Шкала измерений количественного свойства, характеризующаяся соотношениями эквивалентности, порядка, пропорциональности (допускающими в ряде случаев операцию суммирования) различных проявлений свойства. Примечания. 1. Отличительные признаки шкал отношений: наличие естественного нуля и устанавливаемой по соглашению единицы измерений, применимость понятия "размерность", допустимость масштабных преобразований, реализация только посредством эталонов, допустимость изменения спецификаций, описывающих конкретные шкалы. 2. Шкалы отношений, в которых не имеет смысла операция суммирования, называются "пропорциональными шкалами отношений", а шкалы, в которых эта операция имеет смысл, называют "аддитивными шкалами отношений". Например, шкала термодинамических температур - пропорциональная, шкала масс - аддитивная. Абсолютная шкала Шкала отношений (пропорциональная или аддитивная) безразмерной величины. Примечания. 1. Отличительные признаки абсолютных шкал: наличие естественных (не зависящих от принятой системы) единиц нуля и безразмерной единицы измерений, допустимость только тождественных преобразований, реализация как с помощью эталонов, так и без них, допустимость изменения спецификаций, описывающих конкретные шкалы. 2. Результаты измерений в абсолютных шкалах могут выражаться не только в безразмерных единицах, но и в процентах, промиллях, децибелах, битах (см. логарифмические шкалы), 3. Единицы абсолютных шкал могут применяться в сочетании с размерными единицами других шкал. Пример - плотность записи информации в бит/см. 4. Разновидностью абсолютных шкал являются дискретные (целочисленные, счетные, квантованные) шкалы, в которых результат измерения выражается безразмерным числом частиц, квантов или других единичных объектов, эквивалентных по количественному проявлению измеряемого свойства. Например, значение электрического заряда выражается числом электронов, значение энергии монохроматического электромагнитного излучения - числом квантов (фотонов). Иногда за единицу измерений в таких шкалах принимают какое-то определенное число частиц (квантов), например, один моль, т.е. число частиц равное числу Авогадро со специальным названием (Фарадей, Эйнштейн). Абсолютная ограниченная шкала Абсолютная шкала, диапазон значений которой находится в пределах от нуля до единицы (или некоторого предельного значения по спецификации шкалы). Логарифмическая шкала Шкала, построенная на основе систем логарифмов. Примечание . Для построения логарифмических шкал обычно используются системы десятичных или натуральных логарифмов, а также система логарифмов с основанием два. Логарифмическая шкала разностей Логарифмическая шкала измерений, получаемая при логарифмическом преобразовании величины, описываемой шкалой отношений, или интервала в шкале разностей, т.е. шкала, определяемая зависимостью L = log ( X / X 0), где Х - текущее, а Х 0 - принятое по соглашению опорное значение преобразуемой величины. Примечание. Выбор опорного значения Х 0 определяет нулевую точку логарифмической шкалы разностей. Логарифмическая абсолютная шкала Логарифмическая шкала измерений, получаемая логарифмическим преобразованием абсолютных шкал, когда в выражении L = log X под знаком логарифма X - безразмерная величина, описываемая абсолютной шкалой. Примечание. Другое название этой разновидности шкалы - логарифмическая шкала с плавающим нулем. Биофизическая шкала Шкала измерений свойств физического фактора (стимула), модифицированная таким образом, чтобы по результатам измерений этих свойств можно было прогнозировать уровень или характер реакции биологического объекта на действие этого фактора. Одномерная шкала Шкала, используемая для измерений свойства объекта, характеризуемого одним параметром; результаты измерений в такой шкале выражаются одним числом или знаком (обозначением). Многомерная шкала Шкала, используемая для измерений свойства объекта, характеризуемая двумя или более параметрами; результаты измерений в такой шкале выражаются двумя или более числами или знаками (обозначениями). Примечания. 1. Некоторые свойства, в принципе, невозможно описать одним параметром. Например, импеданс и комплексный коэффициент отражения описываются двумя параметрами, образующими двумерные шкалы; цвет описывается тремя координатами в моделях цветовых пространств, образующими трехмерные шкалы. 2. Многомерные шкалы могут быть образованы сочетанием шкал различных типов. Принятый по соглашению документ, в котором дано определение шкалы и (или) описание правил и процедур воспроизведения данной шкалы (или единицы шкалы, если она существует). Примечания. 1. Некоторые метрические шкалы, например, шкалы массы и длины, полностью специфицируются стандартизованными определениями единиц измерений. 2. Спецификации многих, даже метрических шкал, кроме определения единиц измерений содержат дополнительные положения. Например, спецификация шкалы световых измерений содержит не только определение единицы измерений яркости - канделы, но и табулированную функцию относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Элементы шкал измерений Основные понятия, необходимые для определения школ: класс эквивалентности, нуль, условный нуль, условная единица измерений, естественная (безразмерная) единица измерений, диапазон шкалы измерений. Нуль шкалы Элемент шкал порядка (некоторых), интервалов, отношений и абсолютных, их начальная точка. Примечание . Различают естественный и условный нули шкал. Естественный нуль шкалы Начальная точка шкалы, соответствующая стремящемуся к нулю количественному проявлению измеряемого свойства. Условный нуль шкалы Точка шкалы разностей (интервалов) или шкалы порядка, которой по соглашению присвоено нулевое значение измеряемого свойства (величины). Примечание. Шкала может простираться по обе стороны от точки условного нуля. Например, в наиболее распространенной календарной шкале за условный ноль принят день Рождества Христова. Поэтому общепринято обозначение "...лет до Рождества Христова". Диапазон шкалы измерений Размер величины Количественная определенность измеряемой величины, присущая конкретному объекту деятельности. Значение величины Оценка размера величины по соответствующей ей шкале в виде некоторого числа принятых для нее единиц, чисел, баллов или иных количественных знаков (обозначений). Примечание. Для качественных свойств аналогичным термином является "оценка свойства". Оценка свойства Нахождение местоположения качественного свойства конкретного объекта деятельности на соответствующей шкале наименований. Истинное значение величины Значение величины, которое идеальным образом отражает положение на соответствующей ей шкале реализации количественного свойства конкретного объекта деятельности. Примечание. Для качественных свойств аналогичным термином является "истинная оценка свойства". Истинная оценка свойства Оценка свойства, которая идеальным образом отражает положение на соответствующей шкале наименований реализации качественного свойства конкретного объекта деятельности. Действительное значение величины Значение величины, настолько близкое к истинному значению, что для данной цели может быть использована вместо нее. Действительная оценка свойства Оценка свойства, настолько близкая к истинной оценке, что для данной цели может быть использована вместо нее. Единица измерений Величина фиксированного размера, для которой условно (по определению) принято числовое значение, равное 1. Примечания. 1. Термин "единица величины" является синонимом термина "единицы измерений". 2. Термин "единица физической величины", обозначающий более узкое понятие, применять не рекомендуется, так как невозможно определить границы его применения. 3. Понятие "единица измерений" не имеет смысла для свойств, описываемых шкалами наименований и порядка. Система единиц (измерений) Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами). Примечание. Термин "система единиц физических величин" не вполне корректен, так как известные системы единиц, например, Международная ( SI ), охватывают не только физические величины, но и геометрические (плоский и телесный углы), световые и др. Пределы изменений значений измеряемого свойства, охватываемые данной конкретной реализации шкалы. Измеряемое свойство Проявления общего для объектов деятельности (тел, веществ, явлений, процессов) свойства, выделенного для познания и использования. Примечание. Измеряют количественные и качественные свойства не только физических, но и нефизических объектов (биологических, психологических, социальных, экономических и др.). Измеряемая величина (величина) Измеряемое свойство, характеризуемое количественными различиями. Примечание. Понятие "величина" не применимо к качественным свойствам, описываемым шкалами наименований, поэтому понятие "свойство" является более общим по сравнению с понятием "величина". Основные единицы системы Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц. Примечание. Определения и процедуры воспроизведения некоторых основных единиц могут опираться на другие основные и производные единицы, а также на размерные и безразмерные константы. Производные единицы системы Единицы величин, образованные в соответствии с уравнениями, связывающими их с основными единицами или основными и уже определенными производными. Системные единицы Единицы, входящие в одну из принятых систем единиц. Внесистемные единицы Единицы, не входящие в рассматриваемую систему единиц. Примечание . Единица, внесистемная по отношению к некоторой системе, может быть системной по отношению к другой системе. Когерентная производная единица Производная единица, связанная с другими основными и производными единицами системы уравнением, в котором числовой коэффициент равен 1. Когерентная система единиц Система единиц, состоящая из основных и когерентных производных единиц. Примечание. Примером когерентной системы единиц является Международная система единиц - SI . Кратная единица Единица, в целое число раз большая системной или внесистемной единицы. Примечание . В SI образуется с множителем 10 в степени п. Дольная единица измерений Единица, в целое число раз меньшая системной или внесистемной единицы. Примечание . В SI образуется с множителем 10 в степени минус п. Условная единица измерений Единица, размер которой установлен по соглашению. Примечание. Условными единицами измерений, в частности, являются основные единицы Международной системы единиц ( SI ). Абсолютная единица измерений Единица измерения величины, описываемой абсолютной шкалой, размер которой однозначно определяется безразмерным характером измеряемой величины. Примечания. 1. В абсолютных единицах измеряются такие величины, как коэффициенты отражения, пропускания, усиления, ослабления и т.п. 2. Широко распространено применение дольных абсолютных единиц: процентов, промилле. Логарифмическая единица измерений Единица измерений логарифмической шкалы. Примечание. Получили распространение логарифмические единицы: бел, децибел, лог, децилог, непер, байт и др. Размер единицы Размер величины, принятой за единицу измерения. Измерение Сравнение конкретного проявления измеряемого свойства (измеряемой величины) со шкалой (частью шкалы) измерений этого свойства (величины) с целью получения результата измерения (значения величины или оценки свойства). Объект измерений Объект деятельности (тело, вещество, явление, процесс), одно или несколько конкретных проявлений свойств которого подлежат измерениям. Примечание. Объектами измерений являются как физические, так и нефизические объекты Средство измерений Объект, предназначенный для выполнения измерений, имеющий нормированные метрологические характеристики, воспроизводящий и (или) хранящий какую-либо часть (точку) шкалы с установленной погрешностью (неопределенностью) в течение заданного интервала времени. Мера Средство измерений, воспроизводящее и (или) хранящее одну или несколько точек шкалы измерений. Примечание. Понятие меры применимо в шкалах, описывающих как количественные свойства (величины - "мера величины"), так и качественные свойства, например, "мера цвета" - стандартизованный образец цвета. Однозначная мера Мера, воспроизводящая и (или) хранящая одну точку шкалы. Многозначная мера Мера, воспроизводящая и (или) хранящая две или более точек шкалы. Примечание. Многозначная мера может воспроизводить и (или) хранить некоторый участок шкалы. Пример: градуированный конденсатор переменной емкости. Набор мер Комплект мер, воспроизводящих точки шкалы (шкал), применяемых как в отдельности, так и, если это имеет смысл, в различных сочетаниях. Примеры: набор гирь, набор мер твердости, набор образцов цвета и т.д. Измерительный прибор Средство измерений, предназначенное для получения значения измеряемой величины или оценки свойства в установленном диапазоне (участке) шкалы измерений. Примечание. Измерительный прибор, как правило, содержит меру и устройства для преобразования измеряемой величины (измеряемого свойства) в сигнал измерительной информации и его индикации в форме, доступной для восприятия. Стандартный образец (вещества или материала) Мера специфического свойства (величины), в том числе характеризующего состав или значение величины (величин), для измерения которой необходимо учитывать особенности данного вещества (материала). Примечания. 1. Стандартные образцы, в основном, применяются непосредственно при выполнении измерений, но могут применяться и как эталоны при поверке (калибровке) средств измерений. 2. Существуют стандартные образцы неколичественных (качественных) свойств, например, в колориметрии широко применяются наборы стандартных образцов цвета объектов - атласы цветов. Измерительный преобразователь Средство измерений или его часть, служащее для получения и преобразования информации об измеряемой величине (измеряемом свойстве) в форму, удобную для обработки, хранения, дальнейших преобразований, индикации или передачи. Компаратор Устройство, среда, объект, используемый для сравнения хранимых или воспроизводимых средствами измерений участков (точек) шкал измерений. Примечание. Компаратор в совокупности с мерой может использоваться для измерений. Шкала средства измерений Часть отсчетного устройства средства измерений, представляющая собой упорядоченный ряд оцифрованных отметок, соответствующих хранимой и (или) воспроизводимой части шкалы измерений. Принцип измерений Явление или эффект, положенный в основу метода измерений. Метод измерений Прием или совокупность приемов сравнения конкретного проявления измеряемого свойства (измеряемой величины) со шкалой измерений возможных проявлений этого свойства (величины). Результат измерений Значение величины или оценка свойства, полученные путем измерений. Примечания. 1. За результат измерений в шкалах разностей (интервалов), отношений и абсолютных, чаще всего принимают среднее арифметическое из ряда результатов равноточных наблюдений. 2. В шкалах порядка за результат измерений можно принять медиану результатов ряда наблюдений, но нельзя принимать среднее арифметическое 3. Результат измерений в шкалах наименований выражается эквивалентностью конкретного проявления свойства точке или классу эквивалентности соответствующей шкалы. 4. Результат измерений должен также содержать информацию о его неопределенности (погрешности). Область (участок) шкалы измерений, в которой предположительно находится истинная оценка свойства или истинное значение измеряемой величины. Погрешность результата измерений (погрешность измерений) Отклонение результата измерения от истинного значения измеряемой величины Примечания. 1. На практике всегда имеют дело с приближенной оценкой погрешности измерений, чаще всего получаемой как отклонение от действительного значения. 2. Термин "погрешность измерений" неприменим к результатам измерений в шкалах порядка и наименований, где применяется понятие "неопределенность результата измерения". 3. Различают по различным классификационным признакам погрешности измерений и их составляющие: систематические и случайные, инструментальные, метода измерений, абсолютные и относительные и др. Абсолютная погрешность измерений (абсолютная погрешность) Погрешность измерений, выраженная в единицах измеряемой величины. Примечание. Термин "абсолютная погрешность" применим к результатам измерений в шкалах разностей (интервалов), отношений и абсолютных. Относительная погрешность измерений (относительная погрешность) Погрешность измерений, выраженная отношением абсолютной погрешности измерений к значению измеряемой величины. Примечания. 1. Распространено представление относительной погрешности в процентах. 2. Понятие "относительная погрешность" применимо в измерениях величин по шкалам отношений и абсолютным шкалам, а также к интервалам величин, описываемых шкалами разностей (интервалов). Однако к самим величинам, описываемым шкалами разностей, это понятие неприменимо. Например, бессмысленно (невозможно) выражать в процентах погрешность измерений температуры по шкале Цельсия или погрешность датировки события. Неопределенности результатов измерений, выполняемых при воспроизведении шкалы. Погрешности воспроизведения шкалы Погрешности результатов измерений, выполняемых при воспроизведении точек шкалы. Погрешность воспроизведения единицы измерений Погрешность воспроизведения какой-либо точки шкалы разностей, отношений или абсолютной. Неопределенности передачи шкалы Неопределенности результатов измерений, выполняемых при передаче шкалы. Погрешности передачи шкалы Погрешности результатов измерений, выполняемых при передаче точек шкалы. Погрешность передачи какой-либо точки шкалы разностей, отношений или абсолютной. Эталон (шкалы или единицы измерений) Устройство, предназначенное и утвержденное для воспроизведения и (или) хранения и передачи шкалы или размера единицы измерений средствам измерений. Примечание. В Законе РФ "Об обеспечении единства измерений" используется термин "эталон единицы величины", по смыслу соответствующий термину "эталон шкалы или единицы измерений". Эталон шкалы измерений Эталон, воспроизводящий всю или какую-либо часть шкалы измерений. Примечания. 1. Эталон может воспроизводить одну точку шкалы (одно фиксированное значение величины) - см. эталон единицы измерений. 2. В шкалах наименований и порядка эталоны обязательно воспроизводят целиком практически используемый участок шкалы. Эталон единицы измерений Эталон, воспроизводящий одно значение измеряемой величины (одну точку шкалы). Примечание. Воспроизводимое эталоном единицы измерений значение величины может отличаться от единицы измерений. В настоящее время воспроизводят значение единицы измерений эталоны массы, длины, интервалов времени, электрического напряжения (исключительно или в ряду других значений). Первичный эталон Эталон, предназначенный для передачи шкалы или (и) размера единицы измерений вторичным и (или) рабочим эталонам, а также высокоточным средствам измерений. Вторичный эталон Эталон, которому путем сличения передается шкала или размер единицы от соответствующего первичного эталона для последующей передачи рабочим эталонам и другим средствам измерений. Государственный эталон Эталон, признанный решением уполномоченного на то государственного органа в качестве исходного на территории государства. Примечание. При международных сличениях государственные эталоны и другие, принадлежащие отдельным государствам эталоны, принято называть "национальными эталонами". Международный эталон Эталон, принятый по международному соглашению в качестве первичного международного эталона и служащий для согласования с ним шкал и размеров единиц измерений, воспроизводимых и хранимых национальными эталонами. Рабочий эталон Эталон, предназначенный для передачи шкалы (или размера единицы) рабочим эталонам низших разрядов (образцовым средствам измерений) и рабочим средствам измерений. Примечания. 1. Рабочие эталоны могут по иерархической подчиненности подразделяться на рабочие эталоны 1, 2-го и т.д. разрядов. 2. Рабочие эталоны применяют для поверки и калибровки средств измерений. Эталон сравнения Эталон, применяемый для сличения эталонов, которые не могут быть по разным причинам непосредственно сличены друг с другом. Эталон-переносчик Пригодный для транспортирования эталон, конструктивно предназначенный для передачи шкалы или размера единицы поверяемому или калибруемому рабочему эталону или средству измерений на месте его эксплуатации. Воспроизведение (шкалы или единицы измерений) Совокупность операций, имеющих целью воссоздание шкалы измерений (или ее участка) или размера единицы, соответствующих их спецификации (определению). Передача шкалы (или размера единицы измерений) Приведение шкалы (или ее участка) или размера единицы, хранимой поверяемым (калибруемым) эталоном или рабочим средством измерений в соответствие со шкалой (размером единицы измерений), воспроизводимой или хранимой более точным (исходным) эталоном. Поверка средств намерений Совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям. Примечания. 1. Поверке подвергают средства измерений, применяемые в сфере распространения государственного метрологического контроля и надзора. 2. Как правило, основной операцией поверки является сравнение поверяемого средства измерений с более точным эталоном, применяемым при поверке. Этим самим осуществляется передача шкалы измерений рабочему средству измерений с регламентированной точностью. Часто при поверке проводится градуировка поверяемого средства измерений по эталону. Калибровка средства измерений Совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению средства измерений, не применяемого в сфере, подлежащей государственному метрологическому контролю и надзору. Примечание. Калибровка является метрологической услугой, основной задачей которой является передача калибруемому средству шкалы измерений в интересующем заказчика (потребителя) диапазоне измерений при приемлемой точности. Градуировка средств измерений (градуировка) Экспериментальное определение градуировочной характеристики средства измерений, т.е. установление соответствия между сигналами измерительной информации (отсчетами) и шкалой измерений. Примечание. Операции градуировки используются как при поверке, так и при калибровке. При этом могут устанавливаться поправки к показаниям градуируемых средств измерений.

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ

В Величина измеряемая Воспроизведение (шкалы или единицы измерения) Г Градуировка средств измерений д Диапазон шкалы измерений Е Единство измерений Единица измерений Единица измерений абсолютная Единица измерений внесистемная Единица измерений дольная Единица измерений кратная Единица измерений логарифмическая Единица измерений производная Единица измерений производная когерентная Единица измерений системная Единица измерений системная основная Единица измерений системная производная Единица измерения условная З Значение величины Значение величины действительное Значение величины истинное И Измерение К Калибровка средств измерений Компаратор М Мера Мера многозначная Мера однозначная Метрология Метрология законодательная Метрология практическая (прикладная) Метрология теоретическая Метод измерения Н Набор мер Неопределенность воспроизведения шкалы Неопределенность передачи шкалы Неопределенность результата измерений Нуль шкалы Нуль шкалы естественный Нуль шкалы условный О Образец стандартный Объект измерений Оценка свойств Оценка свойств действительная Оценка свойств истинная П Передача шкалы (или размера единицы измерения) Поверка средств измерений Погрешность воспроизведения единицы Погрешность воспроизведения шкалы Погрешность измерения абсолютная Погрешность измерения относительная Погрешность передачи размера единицы измерений Погрешность передачи шкалы Погрешность результата измерений Преобразователь измерительный Прибор измерительный Принцип измерений Р Размер величины Размер единицы Результат измерений С Свойство измеряемое Система единиц Система единиц когерентная Спецификация шкалы измерений Средство измерений Т Тип шкалы Ш Шкала абсолютная Шкала абсолютная ограниченная Шкала биофизическая Шкала величин Шкала измерений Шкала логарифмическая Шкала логарифмическая абсолютная Шкала логарифмическая разностей Шкала многомерная Шкала наименований Шкала одномерная Шкала отношений Шкала порядка Шкала разностей (интервалов) Шкала средств измерений Э Эталон Эталон вторичный Эталон государственный Эталон единицы измерений Эталон международный Эталон рабочий Эталон сравнения Эталон первичный Эталон-переносчик Эталон шкалы измерений Элемент шкалы измерений