Русский язык

Математическое ожидание непрерывной случайной величины. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график Плотность распределения вероятностей

Задание 1 . Плотность распределения непрерывной случайной величины Х имеет вид:
Найти:
а) параметр A ;
б) функцию распределения F(x) ;
в) вероятность попадания случайной величины X в интервал ;
г) математическое ожидание MX и дисперсию DX .
Построить график функций f(x) и F(x) .

Задание 2 . Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3 . Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4 . Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x) .

Задача . Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x).

Найдем функцию плотности распределения, как производную от функции распределения.
F′=f(x)=a
Зная, что найдем параметр a:

или 3a=1, откуда a = 1/3
Параметр b найдем из следующих свойств:
F(4) = a*4 + b = 1
1/3*4 + b = 1 откуда b = -1/3
Следовательно, функция распределения имеет вид: F(x) = (x-1)/3

Математическое ожидание .


Дисперсия .

1 / 9 4 3 - (1 / 9 1 3) - (5 / 2) 2 = 3 / 4
Найдем вероятность того, что случайная величина примет значение в интервале
P(2 < x< 3) = F(3) – F(2) = (1/3*3 - 1/3) - (1/3*2 - 1/3) = 1/3

Пример №1 . Задана плотность распределения вероятностей f(x) непрерывной случайной величины X . Требуется:

  1. Определить коэффициент A .
  2. найти функцию распределения F(x) .
  3. схематично построить графики F(x) и f(x) .
  4. найти математическое ожидание и дисперсию X .
  5. найти вероятность того, что X примет значение из интервала (2;3).
f(x) = A*sqrt(x), 1 ≤ x ≤ 4.
Решение :

Случайная величина Х задана плотностью распределения f(x):


Найдем параметр A из условия:



или
14/3*A-1 = 0
Откуда,
A = 3 / 14


Функцию распределения можно найти по формуле.

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

P (х X х + Δх ) = F (х + Δх ) – F (х ),

т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

f (x ) = F ′(x ). (4.8)

Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

Отметим свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция , т.е.

Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

Рис. 4.4 Рис. 4.5

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 4.5. Функция f (x ) задана в виде:

Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

, откуда А = .

б) Функцию распределения находим, используя свойство 3 :

Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

Если х > 2, то f (x ) = 0 и, следовательно

в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

Выше непрерывная случайная величина задавалась с помощью функции распределения. Этот способ задания не является единственным. Непрерывную случайную величину можно также задать, используя функцию, которую называют плотностью распределения или плотностью вероятности (часто ее называют дифференциальной функцией ).

Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f (x) - первую производную от функции распределения F (x) :

f (x)= F" (x).

Из этого определения следует, что функция распределения является первообразной для плотности распределения. Зная плотность распределения, можно вычислить вероятность того, что непрерывная случайная величина примет значение, принадлежащее заданному интервалу.

Теорема . Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (а, b ), равна определенному интегралу от плотности распределения, взятому в пределах от а до b :

Зная плотность распределения f(x) , можно найти функцию распределения F (х) по формуле

.

Свойства плотности распределения:

Свойство 1. Плотность распределения - неотрицательная функция:
.

Геометрически это свойство означает, что точки, принадлежащие графику плотности распределения, расположены либо над осью Ох , либо на этой оси. График плотности распределения называют кривой распределения .

Свойство 2 . Несобственный интеграл от плотности распределения в пределах от
до
равен единице:

.

Геометрически это означает, что вся площадь криволинейной трапеции, ограниченной осью Ох и кривой распределения, равна единице.

В частности, если все значения случайной величины принадлежат интервалу (а, b ), то

.

Математическое ожидание дискретной случайной величины

Закон распределения полностью характеризует случайную величину. Однако он зачастую неизвестен заранее и приходится пользоваться косвенными сведениями. Во многих случаях этих косвенных характеристик вполне достаточно для решения практических задач и определять закон распределения не нужно. Такие характеристики называют числовыми характерис тиками случайной величины. И первой из них является математическое ожидание.

Математическим ожиданиемдискретной случайной величины X называется сумма произведений всех ее возможных значений (x 1 , x 2 , …, x n ) на их вероятности (p 1 , p 2 , …, p n ):

Следует заметить, что M (x ) есть неслучайная (постоянная) величина. Можно доказать, что M (x ) приближенно равно (и тем точнее, чем больше число испытаний n ) среднему арифметическому наблюдаемых значений случайной величины.

Математическое ожидание имеет следующие свойства :

· Математическое ожидание постоянной равно самой постоянной:

.

· Постоянный множитель можно выносить за знак математического ожидания:

.

· Математическое ожидание произведения двух независимых случайных величин X и Y (т.е. закон распределения одной из них не зависит от возможных значений другой) равно произведению их математических ожиданий:

· Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

Здесь под суммой X + Y случайных величин понимается новая случайная величина, значения которой равны суммам каждого значения X с каждым возможным значением Y ; вероятности возможных значений X + Y для независимых случайных величин X и Y равны произведениям вероятностей слагаемых, а для зависимых – произведениям вероятностей одного слагаемого на условную вероятность другого. Так, если X и Y – независимы и их законы распределения

· Если производится n независимых испытаний, в

каждом из которых вероятность события A постоянна и равна p , то математическое ожидание числа появлений события A в серии:

.

Отметим, что свойства третье и четвертое легко обобщаются для любого количества случайных величин.

Дисперсия дискретной случайной величины

Математическое ожидание – удобная характеристика, но часто ее недостаточно для суждения о возможных значениях случайной величины или о том, как они рассеяны вокруг среднего значения. Поэтому вводятся и другие числовые характеристики.

Пусть X – случайная величина с математическим ожиданием M (X ). Отклонением X 0 назовем разность между случайной величиной и ее математическим ожиданием:

.

Математическое ожидание отклонения M (X 0) = 0.

Пример. Пусть задан закон распределения величины X :

Отклонение является промежуточной характеристикой, на основе которой введем более удобную характеристику. Дисперсией (рассеиванием ) дискретной случайной величиныназывается математическое ожидание квадрата отклонения случайной величины:

Для примера найдем дисперсию величины X со следующим законом распределения:

Здесь . Искомая дисперсия:

Величина дисперсии определяется не только значениями случайной величины, но и их вероятностями. Поэтому в случае если две случайные величины имеют одинаковые или близкие математические ожидания (это достаточно часто встречается), то дисперсии, как правило, различны. Это позволяет дополнительно характеризовать изучаемую случайную величину.

Перечислим свойства дисперсии:

· Дисперсия постоянной величины равна нулю:

.

· Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

.

· Дисперсия суммы и разности двух независимых случайных величин равна сумме дисперсий этих величин:

· Дисперсия числа появлений события A в n независимых испытаниях, в каждом из которых вероятность P появления события постоянна , определяется по формуле:

,

где
– вероятность непоявления события.

Удобной вспомогательной характеристикой, используемой в расчетах даже чаще, чем D (X ), является среднеквадратическое отклонение (или стандарт ) случайной величины:

.

Дело в том, что D (X ) имеет размерность квадрата размерности случайной величины, а размерность стандарта X ) та же, что и у случайной величины X . Это очень удобно для оценки разброса случайной величины.

Пример. Пусть случайная величина задается распределением:

X 10м
P 0,1 0,4 0,5

Рассчитываем: м,

а стандарт: м.

Поэтому про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с разбросом
м. Вторая формулировка, очевидно, нагляднее.

Отметим, что для суммы n независимых случайных величин:

Начальные и центральные теоретические моменты

Для большинства практических расчетов введенных выше числовых характеристик M X ),D X )и X ) достаточно. Однако для исследования поведения случайных величин можно использовать и некоторые дополнительные числовые характеристики, позволяющие отследить нюансы поведения случайной величины и обобщить вышеизложенную теорию.

Начальным моментомk-го порядка случайной величины X называется математическое ожидание величины X k :

  • Полная группа событий. Противоположные события. Соот­ношение между вероятностями противоположных событий (с вы­водом).
  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

    Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью
    на определенном участке оси абсцисс. Плотность вероятности
    , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует толькодля непрерывных случайных величин . Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности
    называетсякривой распределения .

    Свойства плотности вероятности непрерывной случайной величины.



    как производная монотонно неубывающей функции F(х). ☻



    Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности
    (т.к.
    , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл
    . ☻

    Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

      Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

    .

    Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

    Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

    где 0<р

    Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

    Ряд распределения биномиального закона имеет вид:

    Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
    выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

    Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

    а ее дисперсия

    Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
    ,

    Ряд распределения закона Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
    выполнено, ибо сумма ряда.

    На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

    Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

    и

    Математическое ожидание

    Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

    Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

    Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

    Задана плотность распределения f(x):

    Задана функция распределения F(x):

    Непрерывная случайна величина задана плотностью вероятностей
    (закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

    Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
    Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
    P(α < X < β)=F(β) - F(α)
    причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
    P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
    Плотностью распределения непрерывной случайной величины называется функция
    f(x)=F’(x) , производная от функции распределения.

    Свойства плотности распределения

    1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
    2. Условие нормировки:

    Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
    3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

    Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
    4. Функция распределения выражается через плотность следующим образом:

    Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }